
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51089 441

The Design and Testing of a Web Application by

Using Modern Implementations Technologies

Al Rubaie Evan Madhi Hamzh

Department of Computer Science, University of Pitesti, Arges, Romania

Abstract: The paper involves creating a web architecture which will set the basis for the completion of an e-commerce

site. This is part of the "design" stage, a stage which is present in almost all methodologies for the development of

software systems. The technology proposed for the subsequent implementation of the site is ASP.NET MVC (model

view controller). The application is designed for the submittal of offers for different products and services. Each

product is described in detail: name or price, the category to which it belongs, its description and a representative

image. The products are put in a basket from which they can be deleted or bought. The application allows its

management through a manager's panel: adding new products, creating new categories of products, editing and deleting

the already existing products. After an order has been placed, the manager is announced through an email containing

the necessary data for filling the order.

Keywords: web design, web application, web programming, and software methodologies.

1. INTRODUCTION

Generally, the purpose of many computers is to take over

information from a certain location, to process it according

to the user's preferences and lastly to display it to the user.

After the user has modified the contents of the information

and after some potential processing has been applied, the

system renews the information in the place from where he

took it over initially. The easiest method of performing an

application that performs these operations is to put the
operations together and treat them as a whole. This

method is good because it's easy to implement.

Nevertheless, afterwards problems occur when one of the

components of the date flow is to be changed, for instance

when the change of the interface is desired. Another

problem involves the business logic that must be

incorporated, a logic which is also subject to changes and

goes beyond a simple interchange of information.

Consequently, the need to modularize the application

appears the need to delimit neatly the components in order

for them to be able to be changed easily and after the

modification the components must still be compatible with
the other modules that make up the application.

A solution to this problem is the Model-View-Controller

(MVC) architecture which separates data storage from

data presentation and processing. So, we have three

distinct classes: The model deals with the application

behaviour and data; it responds to requests concerning the

state of the system, requests to change the state and

notifies the user when these changes have taken place so

that he may react. The view transposes the model into a

form allowing an easy interaction, typically a visual
interface. There may be multiple views for a single model

for different purposes. The controller receives input from

the user and initiates an answer following the requests to

model objects.

The controller is the one that controls the other two object

classes, view and model, instructing them to perform

operations based on the input received from the user.

The diagram of the MVC architecture presents the solid
lines as direct associations and the dotted lines as indirect

associations.

MVC was described for the first time in 1979 by

TrygveReenskaug who worked at the time with Smalltalk

within Xerox PARC. The original implementation is

described in detail in the paper Applications Programming

in Smalltalk-80: How to use Model-View-Controller.

An application oriented on the MVC principles may be a

collection of triad model/view/controller, each one being
in charge of a different element of the user interface.

MVC often occurs in web applications where the view is

the HTML code generated by the application. The

controller receives GET and POST variables as input and

decides what to do with them and it sends them forward to

the model. The model, which contains the business logic

and the associated rules, may perform the necessary

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51089 442

operations on the data in order to enable the application to

generate the above-mentioned HTML code via template

engines, XML pipelines, Ajax type requests etc.

The model is not necessarily only a database, as it's often
both the database and the necessary business logic in order

to manipulate the data in the application. Many

applications use a persistent mechanism of data storage.

MVC does not specify explicitly the level of access to the

data precisely because it's obvious that this in encapsulated

in the model. In some simple applications which have few

logically imposed business rules, the model may be

confined to the database and the functionalities provided

by the database.

The view is also not confined to the display of the
information, as it has an important role also in the

interaction with the user. In the case of the above example

of web applications, the interface generated via an html

code is the one in charge of taking over the input and also

the measures taken in order for it to be accurate.

The controller is often mistaken for the application itself,

whereas its role is to direct data between the other two

classes of objects. Indeed, the model may perform many

operations on the data, but these operations depend on data

format at a given moment. The data which are displayed

/collected from the user often differs significantly from the
data which is stored in the database. These differences are

due to the conversions the controller may apply to the data

in order to facilitate information traffic between

components. Each object class has certain definite

expectations regarding data format, but these format

transformations must be performed automatically in order

to maintain a constant data flow, relieving the other

classes of the concern for the conversions and assuring the

application that every module gets what it expects, besides

the basic function of controlling the request traffic

between modules.

The operational scheme of an application which is

modelled according to the MVC architecture is generally

as follows:

1. The user interacts with the interface (example: he

presses a key on the keyboard)

2. The controller receives the action of pressing the key

and it converts it into an action the model can

understand.

3. The controller notifies the model of the user' s action

and there usually follows a change in the state of the
model (for instance: the model refreshes the state of the

address field)

4. A view interrogates the model in order to generate an

adequate interface (for instance: the viewer displays the

new address next to the old one, near a confirmation

key).

5. The interface awaits additional action from the user and

the cycle repeats itself.

2. THE PROJECTION OF THE APPLICATION

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51089 443

3. THE IMPLEMENTATION OF THE

APPLICATION AND THE DESCRIPTION OF THE

FUNCTIONALITY OF THE CODE

The List method () of ProdusController is the first one to
be used and it deals with listing the products which exist in

the database. Actually, it creates an instance of

ProduseListViewModel which it initializes with the data

extracted from the database: images, name, product, price

etc. This model is then sent to the List view (made up of

an html code which is dynamically generated by the razor)

which displays the data that is encapsulated in it. The List

View contains an "Add to Cart" button which is a form

that sends the ID of the desired product to the addToCart

method of CartController.

 The addToCart method in CartController involves the

following actions: First, the database is interrogated in

order to obtain an object which encapsulates the product

data with the user-selected ID. Once this object has been

obtained, a list shall be created and the object shall be

added to the list, then the server shall return the Index

view to the user. The ASP.NET technology allows this list

to be deleted from the server RAM memory after a certain

period of inactivity of the user thanks to whom the list was

initialized. The Index view only displays the lists of the

products in the cart (the prioritized list as a parameter from

the addToCart method). Here, the user may manage the

cart as each item of the list of the products which are in the

cart is accompanied by a displayed button which accesses
the removeFromCart method of CartController, which

removes that product from the list. In this view, the user

may access the "Continue Shopping" link, which shall

send him directly to the previous List view that displays

all the products. Also in the Index view, the user may

finish the order by pushing the "finish" button which calls

the Finish method in CartController. The methods of

CartController only deal with the user's interaction with

the products in the cart.

The Finish Method in CartController returns to the user a
view that requests him to introduce his personal data in

order to finish the order: email, surname, first name,

address etc. Once the form has been filled in, it shall be

sent to the server, namely to the second Finish method, the

one with parameters. This method checks the cart, and if

the cart is empty, it returns an error “We’re sorry, we

cannot finish the order, as the cart is empty". If the cart is

not empty, then the OrderProcessor method belonging to

the EmailOrderProcessor class is used through the

IOrderProcessor interface. This is possible due to the

dependency injection of the container, which allows the

methods belonging to the EmailOrderProcessor class to be
accessed through the IOrderProcessor interface. This is

one of the SOLID principles, which enable the

programmer to create programs which are easy to maintain

and extend in time. In our case, if the name of the

EmailOrderProcessor is modified, we won't have to make

changes in all the places where we initialized it because

we always used its interface and the name of the

implemented class shall only be modified in the

dependency injection container.

The OrderProcessor method of the EmailOrderProcessor
class uses an email model which it fills in with the buyer's

data and the products ordered by him. This email is sent to

the email of the owner of the online shop. Now the entire

process is finished.

4. TESTING THE APPLICATION

The purpose of the unit testing it to have a suite of tests

where the system behaves in a certain manner for each

test. Each unit test is used in order to check a certain

action regarding the system, but the side effect of each one

is the supply of examples regarding the manner of
interacting with different objects. These examples could

specify the types of arguments, the types which expect to

be returned or the scenarios when the exceptions are

thrown away. All these together achieve an excellent form

of system documentation. The unit tests are generally

created with the support of a testing framework. There are

several frameworks available for .NET but we are going to

use the one which is integrated into visual studio. These

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51089 444

frameworks provide support in order to know which

methods are performed as tests and they provide additional

functions in order to support the developer when he writes

the tests.

Basically, there are a few key points when the unit tests

are created. First, the test methods must belong to a public

class, which has the attribute TestClass. Secondly, the test

method per se must be public, with the test attribute

TestMethod (different test frameworks have a different

syntax in these cases).

After the tests have been created, there must be a way to

perform them in order to find out if they're valid or not.

Most frameworks come with different ways of performing

unit tests, but in our case this step is achieved through the
visual studio platform.

When creating unit tests, there is a series of best practices

which should be followed. The most important practice is

to treat the test code with the same consideration and

importance as the application code. This means checking

the source code, building the tests together with the

application, and making sure that they are easy to read

without having any duplicate code or an identical logic

broken down into separate methods.

One of the reasons for which some tests are easy to
perform is the fact that they do not depend any other class

in order to work. Nevertheless, there are objects in the real

projects which cannot work independently. In these

situations, we must find a way to concentrate on the class

or methods in which we are interested, in order to prevent

the classes on which it depended from being tested

implicitly. A useful approach is that of using false objects,

which simulate the functionality of the real objects within

the project we are working on, but in a very specific and

controlled manner. The false objects allow us to restrict

the tests in order to examine only the functionality in
which we are interested. The paid versions for Visual

Studio 2012 include support for creating false objects, but

we'll use a library named Rhino Mocks, which is easy to

use and may be used together with all Visual Studio

editions.

Adding a false object to a unit test is telling the Rhino

Mocks library the kind of object we want to work with, the

configuration of its behaviour and then its application to

the test code. We can see how we added and used a false

object in our unit tests belonging to the ValidatorTests

class, a class which we specified above.

An issue which is often overlooked is the fact that every

test must be performed only in order to test one single

thing. There are two reasons for this: first, if the test fails,

the identification of the reason for its failure becomes a lot

more difficult, because there may be several causes.

Ideally, we want the reason for the failure of the test to be

as clear and obvious as possible, because the

troubleshooting of the unit test code in order to identify

the reason for its failure is a big waste of time, energy and

productivity. The second reason is maintainability: if we

have large tests, then their maintenance cost will be all the

higher as their code is more difficult to understand.

We can test the validity of the models returned by the

action methods of the controller by creating an instance of

the controller and using the appropriate method for a view

request. Then, by using the Model property, we'll obtain

the model returned by the view. Then we can compare this

model to a reference model, which will enable us to find

out if the controller method returns accurate data to the

view.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51089 445

5. CONCLUSION

Apart from exposing the method for the design and

implementation of a web application, the paper also dealt

with the issue of unit testing, which involves having a
suite of tests where the system behaves in a certain manner

for each test. Each unit test is used in order to check a

certain action regarding the system, but each one has the

side effect of providing examples regarding the manner of

interaction with different objects. These objects could

specify the types of arguments, the types which expect to

be returned or the scenarios when the exceptions are

thrown away. These together achieve an excellent form of

system documentation. The unit tests are generally created

with the support of a test framework. There are different

available frameworks for .NET, but we'll use the one
which is integrated into visual studio. These frameworks

enable us to know which methods are performed as tests

and they provide additional functions in order to support

the developer when he writes the tests.

REFERENCES

1. Patterns of Enterprise Application Architecture, Martin Fowler,

David Rice, Addison Wesley 2002.

2. Adam Freeman and Steven Sanderson - “Pro ASP.NET MVC 4”,

Fourth Edition.

3. Professional ASP.NET MVC4- Jon Galloway, Phil Haack, Brad

Wilson, K. Scott Allen.

4. Doru Constantin, Emilia Clipici, "Backpropagation neural scheme

for estimating the risk of bankruptcy of the Romanian insurance

and reinsurance companies", Proceedings of the 15th International

Conference on INFORMATICS in ECONOMY (IE 2016),

Education, Research & Business Technologies, ISSN 2284-7472,

ISSN-L 2247-1480, pg 415-421, Bucharest University of Economic

Studies Press, June 02 – 05, 2016, Cluj-Napoca, Romania.

5. http://www.enode.com/x/markup/tutorial/mvc.html.

6. http://msdn.microsoft.com/en-us/library/ff649643.aspx.

7. Doru Constantin, "Principal Directions for Local Independent

Components Analysis", ADVANCED TOPICS ON NEURAL

NETWORKS, Proceedings of the 9th WSEAS International

Conference on NEURAL NETWORKS (NN'08), Artificial

Intelligence Series, WSEAS Press, ISBN: 978-960-6766-56-5,

ISSN: 1790-5109, pg. 127-130, Sofia, Bulgaria, 2-4 Mai, 2008.

8. David Lane, Hugh E. Williams - Web Database Application with

PHP and MySQL, 2nd Edition, O'Reilly, 2004.

BIOGRAPHY

Al Rubaie Evan Madhi Hamzh

Date of birth: 25 October 1976, Iraq,

Babylon.

Qualification: Secondary School "Al

Taleeaa", Iraq, Babylon University of

Babylon, College of Science Doctor -

University of Pitesti - Department of

Computer Science. Hobby: Traveling,

Reading.

http://www.enode.com/x/markup/tutorial/mvc.html
http://msdn.microsoft.com/en-us/library/ff649643.aspx

