
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5952 239

A Transition from Traditional to Agile Software

Development

Anupama Kaushik

Assistant Professor, Department of IT, Maharaja Surajmal Institute of Technology, New Delhi, India

Abstract: The traditional software development methodologies are also known as “Heavy Weight” methodologies.

They are based on a strict sequential series of steps such as requirement phase, implementation, testing and

deployment. They require defining and documenting a stable set of requirements at the beginning of a project itself.

The three most significant traditional methodologies are Waterfall, Spiral Model and Unified Process. Agile software

development (ASD) is a new buzz word within software engineering community. These are also known as “Light

Weight Methodologies”. Agile processes, or development methods, represent an apparently new approach for planning

and managing software development projects. ASD differs from traditional approaches as it puts less emphasis on up-

front plans and strict plan-based control and more on mechanisms for change management during the project. In this

paper a study on characteristics of both traditional software development as well as agile software development (ASD)

and the reasons for transition from traditional to agile development is done.

Keywords: Traditional software development; Heavy Weight Methodologies; Agile software development; Light

Weight Methodologies.

I. INTRODUCTION

The term traditional software development or Heavy

Weight” methodologies mean the traditional ways of

developing the software, where the software companies

follow the fixed sequence of steps for software

development present in different methodologies. Many

developers found this process very frustrating and these
methodologies accommodate very few changes. As a

result, several consultants have independently developed

methodologies and practices to embrace and respond to

the inevitable change they were experiencing. These

methodologies and practices are based on iterative

enhancements, a technique that was introduced in 1975

and that has become known as agile methodologies [1].

Over the past few years software development

organizations have learned about the benefits of Agile

Methodologies, such as Scrum and XP. The scientific

literature and business journals present numerous success

stories highlighting the benefits of organizations which
successfully adopted agile practices. As a result many

organizations are now aspiring to adopt agile practices [2].

II. CHARACTERISTICS OF HEAVY WEIGHT

METHODOLOGIES

From past many decades heavyweight methodologies were

around. They have a disciplined approach upon software

development with the aim of making software

development more predictable and more efficient.

The heavy weight methodologies have these similar

characteristics [1]:

Predictive approach – Heavyweight methodologies have

a tendency to first plan out a large part of the software

process in great detail for a long span of time. This

approach follows an engineering discipline where the

development is predictive and repeatable. A lot of

emphasis is put on the requirements of the system and how

to resolve them efficiently. These requirements are then

handed over to another group who are responsible for
building the system. The project planning team predicts

the task for construction team and reasonably predicts the

schedule and budget for construction.

Comprehensive Documentation – Heavy weight

methodologies view the requirements document as the key

piece of documentation. In this approach, all the

customers’ requirements are gathered prior to writing any

code. They then get a sign off from the customer to limit

and control the changes. After that a more comprehensive

documentation is made.

Process Oriented - The goal of heavyweight

methodologies is to define a process that will work well
for whoever happens to be using it [3]. The process would

consist of certain tasks that must be performed by the

managers, designers, coders, testers etc. For each of these

tasks there is a well-defined procedure.

Tool Oriented – Project management tools, Code editors,

compilers, etc. must be in use for completion and delivery

of each task.

III. CHARACTERISTICS OF LIGHT WEIGHT

METHODOLOGIES

According to Highsmith and Cockburn [4], “what is new

about agile methods is not the practices they use, but their

recognition of people as the primary drivers of project

success.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5952 240

The light weight methodologies have these similar

characteristics.

People Oriented- Agile methodologies consider people –

customers, developers, stakeholders, and end users – as the

most important factor of software methodologies. As Jim

Highsmith and Alistair Cockburn state, “The most

important implication to managers working in the agile

manner is that it places more emphasis on people factors

in the project: amicability, talent, skill, and

communication” [5].

Adaptive –Agilists welcome changes at all stages of the

project. They view changes to the requirements as good

things, because they mean that the team has learned more

about what it will take to satisfy the market [3]. Today the

challenge is not stopping change but rather determining

how to better handle changes that occur throughout a

project. “External Environment changes cause critical

variations. Because we cannot eliminate these changes,

driving down the cost of responding to them is the only

viable strategy” [4].

Conformance to Actual – Agile methodologies value

conformance to the actual results as opposed to

conformance to the detailed plan. Highsmith states, “Agile

projects are not controlled by conformance to plan but by

conformance to the business value” [6]. Each iteration or

development cycle adds business value to the ongoing

product. For agilists, the decision on whether business

value has been added or not is not given by the developers

but instead by end users and customers.

Balancing Flexibility and Planning – Plans are

important, but the problem is that software projects cannot

be accurately predicted far into the future, because there

are so many variables to take into account. A better
planning strategy is to make detailed plans for the next

few weeks, very rough plans for the next few months, and

extremely crude plans beyond that [7]. In this view one of

the main sources of complexity is the irreversibility of

decisions. If you can easily change your decisions, this

means it’s less important to get them right – which makes

your life much simpler. The consequence for agile design

is that designers need to think about how they can avoid

irreversibility in their decisions. Rather than trying to get

the right decision now, look for a way to either put off the

decision until later or make the decision in such a way that
you will be able to reverse it later on without too much

difficulty [8].

Empirical Process – Agile methods develop software as

an empirical (or nonlinear) process. In engineering,

processes are either defined or empirical. In other words,

defined process is one that can be started and allowed to

run to completion producing the same results every time.

In software development it cannot be considered a defined

process because too much change occurs during the time

that the team is developing the product. Laurie Williams

states, “It is highly unlikely that any set of predefined

steps will lead to a desirable, predictable outcome because

requirements change technology changes, people are

added and taken off the team, and so on” [9].

Decentralized Approach – Integrating a decentralized

management style can severely impact a software project

because it could save a lot of time than an autocratic

management process. Agile software development spreads

out the decision making to the developers. This does not

mean that the developers take on the role of management.

Management is still needed to remove roadblocks standing

in the way of progress. However management recognizes

the expertise of the technical team to make technical

decisions without their permission.

Simplicity – Agile teams always take the simplest path

that is consistent with their goals. Fowler states, “They

(agile teams) don’t anticipate tomorrow’s problems and try

to defend against them today” [3]. The reason for

simplicity is so that it will be easy to change the design if

needed on a later date. Never produce more than what is

necessary and never produce documents attempting to

predict the future as documents will become outdated.

“The larger the amount of documentation becomes, the

more effort is needed to find the required information, and

the more effort is needed to keep the information up to

date” [10].

Collaboration – Agile methods involve customer

feedback on a regular and frequent basis. The customer of

the software works closely with the development team,

providing frequent feedback on their efforts. As well,

constant collaboration between agile team members is

essential. Due to the decentralized approach of the agile

methods, collaboration encourages discussion. As M.

Fowler describes, “Agile teams cannot exist with

occasional communication. They need continuous access

to business expertise” [3].

Small Self-organizing teams – An agile team is a self-

organizing team. Responsibilities are communicated to the

team as a whole, and the team determines the best way to

fulfill them. Agile teams discuss and communicate

together on all aspects of the project. That is why agility

works well in small teams. As Alistair Cockburn and Jim

Highsmith highlight, “Agile development is more difficult

with larger teams. The average project has only nine

people, within the reach of most basic agile processes.

Nevertheless, it is interesting to occasionally find

successful agile projects with 120 or even 250 people” [5].

IV. NEED OF TRANSITION FROM TRADITIONAL

TO AGILE

The main difference between the traditional and agile

methodologies is the acceptance of change. It is the ability

to respond to change that often determines the success or

failure of a software project [9]. Traditional methods

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5952 241

freeze product functionality and disallow change.

However one of the key factor for the success of agile

processes is its response to change at any stage of the

project. It becomes very difficult to provide a set of stable

requirements in this volatile and constantly changing
environment. Martin Fowler and Jim Highsmith founders

of the agile manifesto mention that, “Facilitating change is

more effective than attempting to prevent it. Learn to trust

in your ability to respond to unpredictable events; it’s

more important than trusting in your ability to plan for

disaster,” [11]. Furthermore, B. Berry and P. Philip [11]

and C. Jones [12] both concluded that during their project

development experience, requirements change at 25% or

more.

A research study was conducted by a Standish Group of
365 respondents and regarding 8,380 projects representing

companies across major industry segments. From their

findings, 16.2% of the projects were completed on-time

and on-budget with all features and functions specified.

However 52.7% of the projects are completed but over-

budget, over the time estimate and offering less features

and functions while 31.1% of projects were canceled at

some point during the development cycle [13] . The study

further reveals that the three major reasons that a project

will succeed are user involvement, executive management

support, and a clear statement of requirements.

Another limitation of heavyweight methodologies is the

handling of complexity. “Complex rules and regulation

give rise to simple stupid behaviour,” says the former

CEO of Visa International [3]. The approach to plan

everything and then to follow the plan works smoothly for

stable and less complex environment but for larger and

more complex environments, this technique would fall

apart.

The agilists believe that people can respond quicker and

transfer ideas more rapidly when talking face-to-face than
they can in heavyweight methodologies when reading or

writing documentation. When developers talk with

customers and sponsors, they could work out difficulties,

adjust priorities, and examine alternate paths forward in

ways not possible when they are not working together.

According to Cockburn the most significant single factor

is “communication” [14].

Agile methodologies focus on the talents and skills of

individuals and molds processes to specific people and

teams, not like heavyweight methods where all tasks and

roles are assigned to individuals and it is expected that the
individuals will perform their tasks accordingly.

Another argument between agile and heavyweight

methodologies is the measurement of project success. A

predictive heavyweight project considers a project to be

successful that is on-time and on-cost [15].However

agilists measures project success by questioning if the

customer got software that is more valuable to them than

the cost put into it. According to Martin Fowler, “A good

predictive project will go according to plan, a good agile

project will build something different and better than the

original plan foresaw” [3].

V. CONCLUSION

Traditional software development methodologies are

always the choice of software developers but the use of

agile methodologies is like a feather on a cap. In this paper

the need of agile methodologies and why transition from

traditional to agile software development is required is

studied.

ACKNOWLEDGMENT

The author is thankful to all the authors whose references

are included.

REFERENCES

[1] M.A. Awad, “A Comparision between Agile and Traditional

Software Development Methodologies”.

[2] Naftanaila Ionel, “ Agile Software Development Methodologies:

An Overview of the Current State of Research”pp 381-385

[3] M. Fowler, “The New Methodology,” http://www.martinfowler.

com/articles/newMethodology.html

[4] J. Highsmith and A. Cockburn, “Agile Software Development: The

Business of Innovation”, IEEE Computer,

[5] J. Highsmith and A. Cockburn, “Agile Software Development: The

People Factor”, IEEE Computer, http://www.jimhighsmith.com/

articles/IEEEArticle2Final.pdf

[6] J. Highsmith, Agile Software Development Ecosystem. Addison

Wesley, 2002

[7] J. A. Highsmith, Adaptive Software Development: A Collaborative

Approach to Managing Complex Systems. Addison Wesley 2000.

[8] M. Fowler, “Is Design Dead?”, Software Development,

http://www.martinfowler.com/articles/designDead.html

[9] Williams and A. Cockburn, “Agile Software Development: It’s

about Feedback and Change,” IEEE Computer, June 2003, pp. 39-

43

[10] P. Wendorff, An Essential Distinction of Agile Software

Development Processes Based on Systems Thinking in Software

Engineering Management. Addison Wesley; page 218.

[11] B. Barry and P. Philip, “Understanding and Controlling Software

Costs”, IEEE Transactions on Software Engineering, Vol. 14 No

10, October 1988

[12] C. Jones, Applied Software Measurements. McGraw Hill,1997

[13] The Standish Group International, “The CHAOS Report,”

http://www.standishgroup.com/sample_research/chaos_1994_1.php

[14] A. Cockburn, “Characterizing People as Non-Linear, First-Order

Components in Software Development,”

http://alistair.cockburn.us/crystal/articles/cpanfocisd/characterizing

peopleasnonlinear.html

[15] Dynamic System Development Method Consortium, “DSDM

Tour”, http://www.dsdm.org.

http://www.martinfowler.com/articles/designDead.html
http://www.standishgroup.com/sample_research/chaos_1994_1.php

