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Abstract: The term Sparsity refered to as the number of non zero elements in sparse approximation and it can be 

measured by  L0 Norm. Sparse dictionary learning algorithms used to find sparse representation of the input data in the 

form of linear combination of basis elements. This elements are called atoms and it compose dictionary. Dictionary 

learning methods have been successfully used in a number of signal and image processing applications and this 

includes image denoising, face recognition, compression analysis. Dictionary learning algorithms consist of two stages: 

a sparse coding stage and a dictionary update stage. In the first stage the dictionary is kept constant and the sparsity 

assumption is used to produce sparse linear approximations of the observed data. In the second stage, the coefficients of 

the linear combination are kept constant and the dictionary is updated to minimize a certain cost function. The 

performance of these methods strongly depends on the dictionary update stage since most of these methods share a 
similar sparse coding stage. In previous dictionary learning algorithms sparsity constraint is only used in sparse coding 

stage but in proposed method the sparsity constraint is used both in sparse coding and dictionary update stage. 
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I. INTRODUCTION 

 

Sparse approximation of a signal is the representation that 

signal with less number of nonzero elements. The term 

sparsity refers to the number of nonzero elements in the 

sparse approximation of the signal. Sparsity of a signal is 

measured by  L0 norm. There of lot of advantages working 
with sparse vectors. For example calculation involving 

multiplying a vector by matrix takes less time to compute 

if the vector is sparse. Also Sparse vector requires less 

space when being stored on a computer as only the 

position and value of entries need to be stored. 
 

Sparse dictionary learning algorithms aim to find sparse 

representation of the input data in the form of linear 

combination of basis elements. Collection of these basis 

elements called dictionary and each basis element is 

known as atoms. Dictionaries are classified into 

undercomplete dictionaries and overcomplete dictionaries. 

In undercomplete dictionaries the number of atoms is less 

than the dimension of the signal and in overcomplete 

dictionaries the number of atom is greater than the 
dimension of signal. Overcomplete dictionaries are the 

typical assumption for a sparse dictionary learning 

algorithm problem. Dictionary learning methods have 

been successfully used in a number of signal and image 

processing applications and it includes image denoising, 

face recognition, compression and FMRI data analysis.  

Dictionary learning problem can be formulated as follows. 

Let take the given input signal as Y 

and Y = [y1   y2  … .  yN  ], where  yi denote an element of 

Y,  yi  ϵ Rn  . Consider a given dictionary  D ϵ Rn×K  which  

 

 

contains K atoms and each atom have n 

dimension, dk  ϵ Rn . The dictionary learning algorithm 

generates a representation of signal, yi as a sparse linear 

combination of the atoms dk  for k = 1,2,…K, K << N. 
 yi = Dxi                                                     (1) 

 

Where xiϵ RK is a sparse representation vector of  yi such 

that  xi = s << K. Where s is the minimum number of 

nonzero elements contained in xi. This problem is shown 

in fig.1. 

 

 
Fig 1. Dictionary learning 

 
From figure for the given input signal we need to find the 

Dictionary and sparse representation of the input signal. 

Dictionary learning algorithm consists of two stages: 

Sparse coding stage and dictionary update stage. In sparse 

coding stage for the given signal we try to find the sparse 
approximation by keeping the dictionary constant. In 

dictionary update stage the spare coefficients kept constant 

and try to find the optimum dictionary. Most of the 

dictionary learning algorithms is iterative between this two 

stages. This stage shown in fig.2. 
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In sparse coding stage the dictionary is kept constant and 

the sparsity assumption is used to produce sparse linear 

approximations of the observed data. For the given input 

signal Y and we initialize the dictionary D with either 
DCT coefficients or Fourier transform coefficients or the 

random vectors selected from the input signal. In the 

proposed method the dictionary is initialized with random 

vectors from the input signal. In sparse coding stage we try 

to find the sparse approximation of input signal by using 

this initialized Dictionary and input signal Y. Shown in 

fig.3. In this stage try to minimize the error  Y − DX F
2. 

xi = argminxi
 yi − Dxi 

2;    subject to  xi 0 < s 

 

Different algorithms are available to compute sparse 

coefficients. Which includes Orthogonal Matching 

Pursuit(OMP), Matching Pursuit(MP), Basis Pursuit(BP) 

etc[5]. 

In dictionary update stage the coefficients of linear 

combination are kept constant and the dictionary is 

updated to minimize certain cost function. Dictionary 

update stage can be made sequential or parallel. In 
sequential approach dictionary atoms are updated 

sequentially and in parallel dictionary update each atom is 

updated in parallel. In this stage using sparse 

approximation of input signal which is obtained from 

sparse coding stage and input signal Y, obtain the 

optimum Dictionary D by 

D = argminD Y− DX F
2 

 

 
Fig. 2. Stages of Dictionary learning algorithm 

 

The sparsity constraint used in the sparse coding stage of 

dictionary learning algorithm. Sparsity constraint is the 

pillar of any dictionary learning algorithm. While this 

constraint is always used in sparse coding stage, it has not 

been used in the dictionary update stage. In this work we 

are introducing the sparsity constraint also in dictionary 

update stage.  

 
Fig. 3. Sparse Coding Stage 

 

II. DESIGN OF DICTIONARIES: PRIOR ART  

 

There are many existing methods available for dictionary 

update stage. One of them is K-SVD algorithm. 
 

A. K-SVD Algorithm 

K-SVD algorithm[1] is a sequential dictionary learning 

algorithm. Which means the cost function to get the 

optimum value of dictionary D is split into K sequential 

minimization. At a time only one column and the 

corresponding row of X is updated. And all other columns 

are fixed. Each column dk  of D and its corresponding row 

of coefficients xk  are updated based on a rank-l matrix 

approximation of the error for all the signals when dk  is 

removed. dk  and xk  are updated based on 

        dk , xk = argmindk ,xk
row  Ek − dkxk

row  F
2            (2) 

 

Where Ek   is the residual matrix or error matrix and it 

obtained by Ek = Y −  di xi
rowN

i=1,i≠k .  
 

Singular value decomposition(SVD) of Ek = U∆VT is 

used to find the closest rank-1 matrix approximation of Ek . 

Here Ek   is n × N matrix, so U is n × n matrix, V is N × N 

matrix and ∆ forms a diagonal matrix of size n × N. The 

dk  update is taken as first column of U and xk
row  update is 

taken as first column of V multiplied by the first element 

of ∆. Due to the complexity associated with computation 

of SVD at each stage the minimization problem in(2) can 

be solved by following method. The minimization 
problem can be rewritten as[6] 
 

argmindk ,xk
row  Ek − dkxk

row  F
2

= tr  Ek − dkxk
row   Ek − dkxk

row  T 

= argmindk ,xk
row  Ek F

2 − 2dk
TEk xk

row T

+  dk 
2 . xk

ro w 2 

Subject to  dk 
2 = 1, which gives 

               dk =
Ek xk

row T

 Ek xk
row T

 
2

   and   xk
row = dk

TEk                (3) 

 

Using this equations a dictionary update can be obtained 

by iterating (3) until convergence or by applying only one 

iteration of the equations instead of the computationally 

expensive SVD. 

Direct application of SVD causes loss of sparsity on xk
row . 

To avoid this restricts the optimization for dk  and xk
row , 

only to the signal yi ,  that use the atom dk . Which means 
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we only update the nonzero entries in the xk
row .  For that 

an index set of wk =  i|1 ≤ i ≤ N; xk
row  i ≠ 0  is 

defined. Then we define a matrix Iwk
 as N × wk  submatrix 

of the N × N identity matrix obtained by retaining only 

those columns whose index numbers are in wk . When 

multiplying xk
row × Iwk

 this shrinks the row vector xk
row   

by discarding of the zero entries. Then Ek
R = EkIwk

 and 

taking the SVD of Ek
R  will only modify the nonzero entries  

of xk
row . 

 

III. PROPOSED DICTIONARY UPDATE STAGE 
 

Rather than only updating the nonzero entries of xk
row , in 

the proposed method reupdate the sparsity of xk
row  in 

dictionary update stage. Which means here try to reduce 

the sparsity of xk
row . To formulate this rather than 

minimizing optimization problem in KSVD, here update 

of dk  and xk
row  are obtained by minimization of[3] 

 dk , xk = argmindk ,xk
row  Ek − dkxk

row  F
2 + α xk

row  1 

 

Subject to  dk 2 = 1. 
In order to reduce the sparsity of xk

row  here introducing 

some penalty parameter α[2].Which means α is a non 

negative penalty parameter controlling the amount of 

sparsity in xk
row .Increasing α increases the amount of 

sparsity in  xk
row . For fixed dk  and  dk 2 = 1, the xk

row  

that minimizes above equation is given by 
 

 xk
ro w = argminxk

row  Ek F
2 − 2dk

TEkxk
row T

+     xk
row  2 +

α xk
row  1                               (4) 

 

For fixed xk
row  , the dk   is given by 

 

dk = argmindk
− 2dk

TEkxk
row T

+  dk 
2 . xk

row  2       (5) 

 

Hence the solution is given by 
 

 xk
row = sgn dk

TEk .   dk
TEk −

α

2
I(N)

T  
+

            (6) 

 

Where I(N) is vector of ones of size N and 
 

   dk =
Ek xk

ro w T

 Ek xk
row T

 
2

                                (7) 

  

The operation in (6) is called soft-thresholding [4]. Fig.4 

gives an illustration of how the soft-thresholding rule 

operates.  
 

Instead of taking SVD of Ek
R   to update dk   and xk

row  the 

updates of dk  and xk
ro w  are found by iterating (6) and (7) 

until convergence. The selection of the penalty parameter 
α can be obtained using a model selection criterion or 

cross validation. Computation cost of this iteration is 

O(nN). 

 

 
Fig. 4. An illustration of soft thresholding 𝐲 =

  𝐱 − ∆ +𝐬𝐠𝐧 𝐱 , ∆= 𝟏 

 

IV. RESULT 

 

Learned dictionaries are tested for the estimation of 

missing image data. For that 2000 patches of size 8 × 8 

from training images form a training data Y. Using K-

SVD[1] and proposed method learn dictionaries of size 

64 × 100 from Y. Then select an input image from the set 

of training images. The image is divided into N non 

overlapping patches of size 8 × 8 to form image matrix 

IϵR64×N . From each image patch Ii a fraction of m random 

pixels are deleted, set to zero, where mϵ[0.2, 0.7]. Sparse 

coefficients vector is estimated using OMP for each patch 

with missing pixels and denoted as xi, where i indicates the 

number of patch. Then reconstructed patch is obtained by 

Ii
 = D. xi 

 

Where D is the learned dictionary. Table(1) shows the 

comparisons in terms of sum of squared difference(SSD) 

calculated from the reconstructed image and the original 

lena image. From table(1) we can conclude that the 

proposed method produce better quality estimation 
compared to K-SVD method.  

 

 TABLE I FILL-IN MISSING PIXELS COMPARISON IN 

TERMS OF SSD 

 

Method m= 0.3 m= 0.5 

K-SVD 16.21 22.01 

Proposed 15.05 20.60 

 

V. CONCLUSION 

 

The sparsity constraint is the pillar of any dictionary 

learning algorithm. Compared to previous dictionary 

learning algorithms in which the sparsity constraint only 

used in sparse coding stage, the proposed method 
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introduce sparsity constraint both in sparse coding and 

dictionary update stage. Compared to state of the art 

methods, the proposed algorithm is computationally more 

efficient and generates better results.  
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