
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6206 22

Load Balancing using Amazon Cloud Services

Prof. Vidya Chitre
1
, Kaustubh Katkar

1
, Shriraj Bamne

1
, Vishwanath Prasad

1

Department of Information Technology, Vidylankar Institute of Technology, Mumbai
1

Abstract: One of the most appealing factors about any distributed task execution system is its processing speed to

process the large amounts of data presented by incoming inputs. With increasing scope and popularity of Cloud

services in Industrial applications it becomes important to achieve speeds over the Cloud which should be equal to or, if

possible, faster than the existing traditional computing structure. Today, most of the existing frameworks utilizing

Cloud services are based on Master/Slave architecture. The limitations associated with these Master/Slave architectures

include lack of scalability and a single point of failure, the point of vulnerability being the Master. Our proposed

system, LoBUCS, will provide better scalability and fast processing of HPC [2] and MTC [2] workloads using a fully

parallel Client-Worker based structure eliminating the single point of failure. By utilization of Amazon Web Services

(Amazon EC2 [5], DynamoDB [7] and SQS [6]) we will be substituting the complexity of existing distributed job

management systems while maintaining good utilization.

Keywords: Cloud Services; parallel processing; distributed scheduling; LoBUCS.

I. INTRODUCTION

With LoBUCS we aim at achieving efficient job

distribution driven by Client-Worker environment. This

would be done by balancing the workload and using

parallel processing for utilizing the computation power of

workers.

To establish this efficiency, we will dynamically generate

workers depending on the requirement of the workload [1].

Similarly, the framework will dynamically discard workers

created for a previous larger job that would not be required

for smaller jobs, thus maintaining efficiency in resource

utilization. With the framework as proposed we will

develop an application to hosted on the Amazon Cloud

Servers that would accept images, videos and music clips

as inputs and create a video slideshow as output on

identifying these inputs. Then we will conduct a

corresponding comparison with speeds in existing

frameworks and determine the difference in performance

with respect to the speed and management of incoming

workload.

II. LITERATURE SURVEY

Traditionally, load balancing is being used to handle and

control execution of user tasks and load i.e. users present

online. With increase in load, organizations began to

increase the number of servers required to manage it. But

this increase proves costly.

Also, this increase in servers does not change the fact that

the controller of the system or the main component that are

these servers, leading to a single point of failure. Such a

system will be costly to setup for an extreme level load,

also to overcome single failure points, huge space would

also be needed for backups of the data. One alternative was

that, instead of buying the server components, an

organization could setup a cloud, but it would need to keep

an employee for its maintenance and handling. Instead of

running such systems individually, we are proposing to use

the complete job execution system over a public cloud

which is highly optimized on cloud environment [1].

Our proposed system would end any dependency over a

single server. Our idea is to create a complete system for

load balancing over cloud and develop separate

components for detection, allocation and clearance of user

jobs. The aim of our system is to develop a lightweight

distributed task execution framework that runs on instances

created through Amazon Elastic Compute Cloud (EC2) [5]

with the help of the building blocks of a distributed system

such as Simple Queuing Service (SQS) [6] and the Amazon

distributed NoSQL key/value store (DynamoDB) [7].

Through this we will achieve the goal of creating an

application running on a compact and lightweight task

execution framework [3] featuring fast processing speed

and scalability. Load balancing and task execution will be

achieved through SQS. Instead of assigning of jobs by the

administrator component, such as a Master in Master/Slave

architecture, we will implement pulling or work stealing

algorithms on the worker nodes.

The proposed system will make complete use of cloud and

virtual services which will help in cutting the cost

massively as the hardware costs are significantly

minimized.

The proposed system will let us achieve the following

benefits:

1. HTC (High Throughput Computing) [2] applications

can be executed with enhanced efficiency.

2. Processing of extremely large amounts of data without

any interruption.

3. Any type of heavy job submissions can be handled by

this framework.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6206 23

The proposed framework will then be used to host a job

processing application. This application will take high

quality images, video clips and music as an input and

process them quickly to give a video slideshow with

background music as an output.

III. TRADITIONAL SYSTEM

The traditional systems employed by the organizations

have the following limitations:

1. Larger number of servers required.

2. Manpower required for system maintenance.

3. System upgrade is time consuming and costly.

4. Small and Medium businesses find buying and

maintaining their own servers and systems too

expensive.

IV. PROPOSED SYSTEM

Figure 1: LoBUCS Architecture

1. Global Request Queue— The proposed system will

accept user jobs which will then get queued in the Global

Request Queue. This Global Request Queue behaves as a

big pool for tasks to be executed. Client submits their jobs

here and workers pull jobs from this pool.

2. Dynamic Provisioner— Input job would be allocated

resources and its processing would be done on a virtual

system i.e. on cloud. The resources required are provided

by the workers with their computational power. Workers

are created dynamically by Dynamic Provisioner making

the system scalable.

3. Client Response Queue— To achieve parallelism,

Client program requires is made to be multithreaded so that

it can submit multiple tasks in parallel. The Client creates a

response queue for itself before submitting any tasks. The

tasks submitted by the client will carry the address of the

client response queue. To reduce overhead in

communication the client will have the option for task

bundling.

Figure 2: Communication Cost

4. DynamoDB— The status of the system is maintained

by DynamoDB. This helps the workers to identify which

tasks have been completed and which are yet to be

executed. Utilization of each worker is reported

periodically by a monitoring thread.

5. Distributing job entry, resource allocation, job pulling

and processing will remove the single failure point by

removing the dependency from the central component.

V. ADVANTAGES

1. To replace traditional master slave architecture.

2. To shift complete load balancing on cloud.

3. To remove the responsibility of maintaining servers.

4. To increase the efficiency of the work (MTC or HPC

jobs).

VI. LIMITATIONS

1. Efficiency decreases when watcher fails or no worker is

available.

2. System cannot work without Internet Service.

3. One of the major limitations is the inability of SQS to

identify duplicates in input jobs [1].

VII. SOLUTIONS

1. Secondary watcher component will be developed so

that it is able to replace the watcher in case of failure.

Workers will be created dynamically by Dynamic

Provisioner component.

2. A stable internet connection will be maintained during

the implementation process.

3. We will make use of DynamoDB for verification of

duplication. The worker thread will verify whether the

is new or a duplicate. The worker thread then makes a

conditional write to DynamoDB table which results in

adding a unique identifier for the task which is a

combination of Task ID and the Client ID.

VIII. CONCLUSION

Our system will allocate resources dynamically, therefore

wastage of power is reduced. Also, the speed of this system

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6206 24

will be higher as compared to traditional master slave

architecture based systems. Users will experience the faster

processing of the system upon execution of heavy jobs.

REFERENCES

[1] Iman Sadooghi, Sandeep Palur, Ajay Anthony, Isha Kapur, Karthik

Belagodu, Pankaj Purandare et al, “Achieving Efficient Distributed

Scheduling with Message Queues in the Cloud for Many-Task

Computing and High-Performance Computing,” Illinois Institute of
Technology, Chicago IL, USA, 2014.

[2] A. Rajendran, Ioan Raicu. "MATRIX: Many-Task Computing

Execution Fabric for Extreme Scales,” Department of Computer
Science, Illinois Institute of Technology, MS Thesis, 2013.

[3] I. Raicu, et. al. “Falkon: A Fast and Light-weight tasK executiON

Framework,” IEEE/ACM SC 2007.

[4] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. “Case study

for running HPC applications in public clouds” In Proc. of ACM

Symposium on High Performance Distributed Computing, 2010.

[5] Amazon Elastic Compute Cloud (Amazon EC2), Amazon Web
Services, [online] 2016, http://aws.amazon.com/ec2/

[6] Amazon SQS, [online] 2016, http://aws.amazon.com/sqs/

[7] Amazon DynamoDB, Amazon Web Services, [online] 2016,
http://aws.amazon.com/dynamodb.

