Design of Ultra Low Power 7.2 GHz True Single Phase Clock CMOS 2/3 Prescaler 244 µW

Roshan Kumar 1, Prof. Monika Kapoor 2
PG Student, VLSI Design, LNCT Bhopal 1
ECE Department, LNCT Bhopal, MP, India 2

Abstract: In this paper a high operating frequency and power efficient TSPC prescaler layout is proposed and compared with the existing TSPC and E-TSPC prescalers on the basis of operating frequency and power consumption. The maximum operating frequency of the proposed TSPC prescaler is 7.2 GHz which is 10% higher than other TSPC based prescalers and 7% than E-TSPC based prescalers with average power consumption of 307 µW at 1.8 V supply voltage. This high frequency is achieved by reducing propagation delay in PMOS and NMOS at different stages. The power consumption in divide by 2 and divide by 3 mode is 3% to 10% better than all other prescalers and four times better than those prescalers which can be operated higher than 6.5 GHz frequency. This prescaler consumes 348 µW in divide by 2 mode and 244 µW in divide by 3 mode.

Keywords: Dual modulus prescaler, D Flip-flop (DFF), True single phase clock (TSPC), Microwind, DSCH, Frequency synthesizer, Clock, Propagation Delay.

1. INTRODUCTION

True Single phase Clock Dual modulus prescaler is an essential part of frequency synthesizer which generates variable frequency by using only one clock signal. Frequency synthesizers are digital circuits used to generate variable frequency which plays a major role in digital devices where multiple and/or variable clock frequency are required. Frequency synthesizers use different techniques such as frequency divider, frequency multiplier and direct digital synthesizer. A high speed dual modulus prescaler frequency synthesizer is used in many electronic systems such as timing recovery circuit, clock generator etc. In a frequency synthesizer, prescaler consumes maximum power with respect to other components. By reducing the power consumption of prescaler it is possible to make a power efficient frequency synthesizer. A dual modulus prescaler uses a wideband swallow frequency divider and has N and N+1 division ratios. Frequency synthesizer produces variable frequency by using prescaler and control circuit. This control unit uses two counters, Programmable Counter (P) and Swallow Counter (S), it is shown in Fig. 1. The combination of Prescaler and counters P and S performs N × P + S programmable division ratio.

Fig. 1. Topology of the Pulse Swallow frequency divider

Dynamic latch frequency synthesizer, injection locked frequency dividers (ILFDs) and source-coupled logic (SCL) [7], [8] are three widely used techniques for making high speed flip-flops for prescaler. Basically prescaler are made of D flip-flop and logic gates. Those D flip-flops can be driven by single phase clock [3], [5] or multiple phase clock. Those logic gates are used between D flip-flops to generate two consecutive divisional ratios. In the prescaler the D flip-flops are controlled directly by clock signal so the speed of the circuit is dependent on the speed of logic gates and switching power also increases.

Fig. 2. TSPC and E-TSPC flip-flop.

The CMOS N/(N + 1) current mode logic (CML) [7] based prescaler can be operated as high as 24 GHz [6]. But the major drawback of the prescaler is the large load capacitances which increases power consumption. On the other hand the injection locked frequency dividers (ILFDs) have very small locking range and it also required large chip area for injection locking circuit. While Dynamic CMOS needs very small chip area with low power needs.
II. ANALYSIS OF TSPC AND E-TSPC FLIP-FLOP

In this section TSPC [3], [9], and E-TSPC [10] based flip-flops are analysed with its power consumption and frequency response. In dynamic latch frequency synthesiser, multiple phase clock frequency synthesiser are better for compact circuits and these are more power efficient than single phase frequency synthesizer. The maximum operating frequency is also higher. But these are not good for complex and big circuits because these generally prone to the clock skewing problem. It is difficult to maintain equal electrical length of all the clocks signals in same phase difference through tracks to each component in entire device. That’s why single phase clock frequency synthesiser are widely used for big and complex circuit.

Since there is one direct path exists between each consecutive stages at the time of transition between supply voltage and ground in E-TSPC flip-flop. So that it consumes significantly more short circuit current than TSPC flip-flop. The short circuit power also dependent on the time for which a transistor is in floating state (neither high nor low) which increases with increasing frequency. Which again shows that in E-TSPC short circuit power increases with increases in clock frequency.
The simulation shows the power consumption of TSPC flip-flop varies from 50 to 65 µW for entire range of tested DC level and Amplitudes. On the other hand ETSPC flip-flop consumed more power from 120 to 215 µW which is not only more than double but also varies significantly with DC levels and Amplitudes. It is also observed that the output waveforms of TSPC flip-flop is quiet identical in all simulation but the wave forms of ETSPC flip-flop simulation are deferent in shape. The simulation results in Fig. 4 shows that the TSPC flip-flop is better than ETSPC flip-flop.

III. ANALYSIS OF PROPOSED TSPC PRESCALER

In the 2/3 prescaler proposed in [1] shown in Fig. 5, the two NOR gates are implanted in to the flip-flops. This helped to reduce total number of transistors used to implement each NOR gate, as depicted in Fig. 6. The first NOR gate is embedded in to first D flip-flop using only one NMOS transistor M10 at the output node S3 in the third stage of flip-flop. This node S3 is connected to the second NOR gate which is embedded in to the first stage of second D flip-flop. This implementation reduced the additional stages introduced by an extra invertor used to invert the output of DFF1 and the digital gates between both the D flip-flops of the conventional TSPC 2/3 prescaler. This elimination reduced the total number of switching nodes from 12 to 7, and less number of nodes also reduced the switching power \(P_{\text{switching,} [1]} \) of prescaler, it is given by

\[
P_{\text{switching,} [1]} = \sum_{i=1}^{7} f_{\text{clk}} C_{Li} V_{dd}^2
\]

The total capacitance \(C_{L, [1]} \) of 2/3 prescaler of [1] at the output node Q is given by

\[
C_{L, [1]} = C_{DB_{M19}} + C_{DB_{M20}} + 2(C_{GD_{M19}} + C_{GD_{M20}}) + C_{GM11} + C_{GM12} + C_{GM22} + C_{PM23}
\]

The total load capacitance \(C_{L} \) at the output node Q of Conventional TSPC 2/3 prescaler is given by

\[
C_{L} = C_{DB_{M30}} + C_{DB_{M31}} + 2(C_{GD_{M30}} + C_{GD_{M31}}) + C_{GM1} + C_{GM12} + C_{GM2} + C_{GM33} + C_{GM34}
\]

And total switching power \(P_{\text{switching}} \) of all 12 stages of Conventional 2/3 prescaler is given by

\[
P_{\text{switching}} = \sum_{i=1}^{12} f_{\text{clk}} C_{Li} V_{dd}^2
\]

By comparing the load capacitances of both conventional 2/3 prescaler and [1] 2/3 prescaler the load capacitance of [1] based 2/3 prescaler is significantly less at the output node Q. It resulted less propagation delay and low power consumption. In this analysis, both the conventional TSPC 2/3 prescaler and [1] 2/3 prescaler are designed with having constant width of 3 µm for the PMOS and constant width of 2 µm for the NMOS transistors. The reduction of switching power in the [1] 2/3 prescaler compared to the conventional TSPC 2/3 prescaler is given by

\[
P_{\text{switching, saved}} = \sum_{i=1}^{7} f_{\text{clk}} C_{Li} V_{dd}^2 - \sum_{j=1}^{7} f_{\text{clk}} C_{Li} V_{dd}^2
\]
In the proposed 2/3 prescaler the width of NMOS and PMOS transistor is not taken constant. Different widths for each transistor is chosen to equalise the mobility of cascade transistors in both pull-up and pull-down networks which are driven by same input signal. It helped to reduce propagation delay difference between NMOS and PMOS of every stage driven by same input signal. This prescaler is almost three times power efficient and supports 58% higher operating frequency compared to that of the conventional TSPC 2/3 prescaler, And comparing with the [1] prescaler, it is 10% power efficient and supports 25% higher operating frequency which are verified by simulation results.

In the proposed 2/3 prescaler the width of all NMOS is 600nm except M15. The width of M15 is 800nm which is used to drive positive cycle of the feedback properly. The width of the PMOS used to implement D flip-flop and Inverter is taken between 1000nm to 1100nm but for PMOS M11 and M12 it is taken 600nm to make a little delay while feed-back cycle is low. This helped the circuit to significantly reduce power consumption in divide by 2 mode. Layout of Proposed 2/3 prescaler is shown in Fig. 7.

IV. SIMULATION AND MEASUREMENT RESULTS

Microwind 3.5 and DSCH 3.5 software are used to perform all the simulations with 180nm CMOS Technology. All simulations are done by taking all parameters constant accept supply voltage. The supply voltage is 1.5 V for [14] and [15] prescalers and for other prescalers supply voltage is 1.8 V. From the simulation the [1] is most power efficient with 5.5 GHz operating frequency. While [2] can be operated up to 6.5 GHz which is highest for a TSPC based prescaler. In the simulation of proposed circuit an input sinusoidal signal of 7.2 GHz is applied as clock input on F_In with 0.9 V DC level and 0.9 V peak to peak amplitude. Sinusoidal input signal is taken for simulation because on chip available VCO generates sinusoidal signal. And the Module Control input is feed with a 100 MHz clock signal with 50 ps rise time and fall time to observe response in divide by 2 and divide by 3 mode and the output is taken from F_Out.

The frequency response shown in Fig 9 shows that the circuit generates very stable output. In divide by 3 mode the output measured is 2.4 GHz and in divide by 2 mode the output measured is 3.6 GHz which is strictly proportional to the input clock frequency 7.2 GHz. The time taken to produce stable output is less than 2 ns for both divide by 2 and divide by 3 mode. The average power consumption of the prescaler is 307µW shown in Fig 9. The power consumption in divide by 2 mode and divide by 3 mode are 348µW and 244 µW respectively. The maximum operating frequency and power consumption of proposed prescaler is compared with different Prescalers, it is shown Fig. 8 and in Table 1.1.

Fig. 7. Proposed Layout of TSPC 2/3 Prescaler.

Fig. 8. Performance of different prescalers
V. CONCLUSION

In this paper a high frequency 2/3 prescaler is proposed which can operate up to 7.2 GHz which is 30% higher than the prescalers proposed in base paper, 10% higher than all other TSPC prescalers and 7% higher than E-TSPC prescalers. The software used for all simulation is Microwind 3.5 with 180nm technology at supply voltage 1.8V. This proposed prescaler is not only supports high frequency but also consumes least power than all other TSPC and E-TSPC prescalers in both divide by 2 mode and divide by 3 mode. In divide by 2 mode it consumes 348µW, 2.5 times less than design I of [1] and in divide by 3 mode it consumes 244µW which is 50% less than [1]. This prescaler also consumes four times less power than those prescalers which can be operated 6.5 GHz or higher frequency. This circuit is suitable low power frequency synthesiser with high frequency response.

According to the observation the maximum operating frequency can further be increased.

REFERENCES

