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Abstract: Several anonymization techniques, such as generalization and bucketization, have been designed for privacy 

preserving microdata publishing. Recent work has shown that generalization loses considerable amount of information, 

especially for high dimensional data. Bucketization, on the other hand, does not prevent membership disclosure and 

does not apply for data that do not have a clear separation between quasi identifying attributes and sensitive attributes. 

In this paper, we present a novel technique called slicing, which partitions the data both horizontally and vertically. We 

show that slicing preserves better data utility than generalization and can be used for membership disclosure protection. 

Another important advantage of slicing is that it can handle high-dimensional data. We show how slicing can be used 

for attribute disclosure protection and develop an efficient algorithm for computing the sliced data that obey the ℓ-

diversity requirement. Our workload experiments confirm that slicing preserves better utility than generalization and is 

more effective than bucketization in workloads involving the sensitive attribute. Our experiments also demonstrate that 

slicing can be used to prevent membership disclosure. 
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1. INTRODUCTION 

 

Privacy-preserving publishing of microdata has been 

studied extensively in recent years. Microdata contains 

records each of which contains information about an 

individual entity, such as a person, a household, or an 

organization. Several microdata anonymization techniques 

have been pro- posed. The most popular ones are 

generalization for k-anonymity and bucketization for ℓ-

diversity. In both approaches, attributes are partitioned 

into three categories: some attributes are identifiers that 

can uniquely identify an individual, such as Name or 

Social Security Number; some attributes are Quasi 

Identifiers (QI), which the adversary may already know 

(possibly from other publicly-available databases) and 

which, when taken together, can potentially identify an 

individual, e.g., Birth-date, Sex, and Zipcode; (3) some 

attributes are Sensitive Attributes (SAs), which are 

unknown to the adversary and are considered sensitive, 

such as Disease and Salary. In both generalization and 

bucketization, one first removes identifiers from the data 

and then partitions tuples into buckets. The two techniques 

differ in the next step. Generalization transforms the QI-

values in each bucket into "less specific but semantically 

consistent" values so that tuples in the same bucket cannot 

be distinguished by their QI values. 
 

1.1 Motivation of Slicing 

It has been shown that generalization for k- anonymity 

losses considerable amount of information, especially for 

high-dimensional data. This is due to the following three 

reasons. First, generalization for k-anonymity suffers from 

the curse of dimensionality. In order for generalization to 

be effective, records in the same bucket must be close to 

each other so that generalizing the records would not lose 

too much information. However, in high-dimensional data,  

 

 

most data points have similar distances with each other, 

forcing a great amount of generalization to satisfy k-

anonymity even for relative small k's. Second, in order to 

perform data analysis or data mining tasks on the 

generalized table, the data analyst has to make the uniform 

distribution assumption that every value in a generalized 

interval/set is equally possible, as no other distribution 

assumption can be justified. This significantly reduces the 

data utility of the generalized data. Third, because each 

attribute is generalized separately, correlations between 

different attributes are lost. 

 

In order to study attribute correlations on the generalized 

table, the data analyst has to assume that every possible 

combination of attribute values is equally possible. This is 

an inherent problem of generalization that prevents 

effective analysis of attribute correlations. 
 

While bucketization has better data utility than 

generalization, it has several limitations. First, 

bucketization does not prevent membership disclosure. 

Because bucketization publishes the QI values in their 

original forms, an adversary can find out whether an 

individual has a record in the published data or not. As 

shown in, 87% of the individuals in the United States can 

be uniquely identified using only three attributes 

(Birthdate, Sex, and Zipcode). 
  
A microdata (e.g., census data) usually contains many 

other attributes besides those three attributes. This means 

that the membership information of most individual can be 

inferred from the bucketized table. Second, bucketization 

requires a clear separation between QIs and SAs. 

However, in many datasets, it is unclear which attributes 
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are QIs and which are SAs. Third, by separating the 

sensitive attribute from the QI attributes, bucketization 

breaks the attribute correlations between the QIs and the 

SAs. In this paper, we introduce a novel data 

anonymization technique called slicing to improve the 

current state of the art. Slicing partitions the dataset both 

vertically and horizontally. Vertical partitioning is done by 

grouping attributes into columns based on the correlations 

among the attributes. Each column contains a subset of 

attributes that are highly correlated. Horizontal 

partitioning is done by grouping tuples into buckets. 
 

Finally, within each bucket, values in each column are 

randomly permutated (or sorted) to break the linking 

between different columns. The basic idea of slicing is to 

break the association cross columns, but to preserve the 

association within each column. This reduces the 

dimensionality of the data and pre- serves better utility 

than generalization and bucketization.  
 

Slicing preserves utility because it groups highly-

correlated attributes together, and preserves the 

correlations between such attributes. Slicing protects 

privacy because it breaks the associations between 

uncorrelated attributes, which are infrequent and thus 

identifying is better than the following enhancement of the 

local recoding approach. Rather than using a generalized 

value to re- place more specific attribute values, one uses 

the multiset of exact values in each bucket. The multiset of 

exact values provides more information about the 

distribution of values in each attribute than the generalized 

interval. Therefore, using multisets of exact values 

preserves more information than generalization.  
 

However, we observe that this multiset based 

generalization is equivalent to a trivial slicing scheme 

where each column contains exactly one attribute, because 

both approaches preserve the exact values in each attribute 

but break the association between them within one bucket. 

We observe that while one attribute per column slicing 

preserves attribute distributional information, it does not 

preserve attribute correlation, because each attribute is in 

its own column. In slicing, one groups correlated attributes 

together in one column and preserves their correlation. 

 

2. SLICING 

 

In this section, we first give an example to illustrate 

slicing. We then formalize slicing, compare it with 

generalization and bucketization, and discuss privacy 

threats that slicing can address. The original table is shown 

in Table 1. The three QI attributes are {Age, Sex , 

Zipcode}, and the sensitive attribute SA is Disease. For 

example, in the first bucket of the sliced table shown in 

Table 2, the values {(22, M ), (22, F ), (33, F ), (52, F )} 

are randomly permutated and the values {(47906, 

dyspepsia), (47906, flu), (47905, flu), (47905, bronchitis 

)} are randomly permutated so that the linking between the 

two columns within one bucket is hidden. 

Table 1. The Original Table 

 

 Age Sex Zip code Disease  

       

 22 M  47906 dyspepsia  

       

 22 F  47906 flu  

       

 33 F  47905 flu  

       

 52 F  47905 bronchitis  

       

 54 M  47302 flu  

       

 60 M  47302 dyspepsia  

       

 60 M  47304 dyspepsia  

       

 64 F  47304 gastritis  

       

 Table 2. The Sliced Table  

    

 (Age, Sex) (Zip code, Disease)  

    

 (22, M) (47905,flu)  

 (22, F) (47906,dysp.)  

 (33, F) (47905,bron.)  

 (52, F) (47906,flu)  

    

 (54, M) (47304,gast.)  

 (60, M) (47302,flu)  

 (60, M) (47302,dysp.)  

 (64, F) (47304,dysp.)  

       

 

2.1 Comparison with Generalization 

There are several types of recordings for generalization. 

The recoding that preserves the most information is local 

recoding. In local recoding, one first groups tuples into 

buckets and then for each bucket, one replaces all values 

of one attribute with a generalized value. Such a recoding 

is local because the same attribute value may be 

generalized differently when they appear in different 

buckets. 

 

2.2 Comparison with Bucketization 

To compare slicing with bucketization, we first note that 

bucketization can be viewed as a special case of slicing. 

There are exactly two columns: one column contains only 

the SA, and the other contains all the QIs. The advantages 

of slicing over bucketization can be understood as follows. 

First, by partitioning attributes into more than two 

columns, slicing can be used to prevent membership 

disclosure. Our empirical evaluation on a dataset shows 

bucketization does not prevent membership disclosure. 
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Second, unlike bucketization, which requires a clear 

separation of QI attributes and the sensitive attribute, 

slicing can be used without such a separation. For dataset 

such as the census data, one often cannot clearly separate 

QIs from SAs because there is no single external public 

database that one can use to determine which attributes the 

adversary already knows. Slicing can be useful for such 

data. 

 

Finally, by allowing a column to contain both some QI 

attributes and the sensitive attribute, attribute correlations 

between the sensitive attribute and the QI attributes are 

preserved. For example, Zipcode and Disease form one 

column, enabling inferences about their correlations. 

Attribute correlations are important utility in data 

publishing. For workloads that consider attributes in 

isolation, one can simply publish two tables, one 

containing all QI attributes and one containing the 

sensitive attribute. 

 

2.3 Privacy Threats 

When publishing microdata, there are three types of 

privacy disclosure threats. The first type is membership 

disclosure. When the dataset to be published is selected 

from a large population and the selection criteria are 

sensitive (e.g., only diabetes patients are selected). one 

needs to prevent adversaries from learning whether one's 

record is included in the published dataset. The second 

type is identity disclosure, which occurs when an 

individual is linked to a particular record in the released 

table. 
 

In some situations, one wants to protect against identity 

disclosure when the adversary is uncertain of member-

ship. In this case, protection against membership 

disclosure helps protect against identity disclosure. In 

other situations, some adversary may already know that an 

individual's record is in the published dataset, in which 

case, membership disclosure protection either does not 

apply or is insufficient. 
 

The third type is attribute disclosure, which occurs when 

new information about some individuals is revealed, i.e., 

the released data makes it possible to infer the attributes of 

an individual more accurately than it would be possible 

before the release. Similar to the case of identity 

disclosure, we need to consider adversaries who already 

know the membership information. Identity disclosure 

leads to attribute disclosure. Once there is identity 

disclosure, an individual is re-identified and the 

corresponding sensitive value is revealed. Attribute 

disclosure can occur with or without identity disclosure, 

e.g., when the sensitive values of all matching tuples are 

the same. For slicing, we consider protection against 

membership disclosure and attribute disclosure. 
 

It is a little unclear how identity disclosure should be 

defined for sliced data (or for data anonymized by 

bucketization), since each tuple resides within a bucket 

and within the bucket the association across different 

columns are hidden. In any case, because identity 

disclosure leads to attribute disclosure, protection against 

attribute disclosure is also sufficient protection against 

identity disclosure. 

 

We would like to point out a nice property of slicing that 

is important for privacy protection. In slicing, a tuple can 

potentially match multiple buckets, i.e., each tuple can 

have more than one matching buckets. 

 

This is different from previous work on generalization and 

bucketization. In fact, it has been recognized that 

restricting a tuple in a unique bucket helps the adversary 

but does not improve data utility. We will see that 

allowing a tuple to match multiple buckets is important for 

both attribute disclosure protection and attribute disclosure 

protection. 

 

3. SLICING ALGORITHMS 

 

We now present an efficient slicing algorithm to achieve 

ℓ-diverse slicing. Given a microdata table T and two 

parameters c and ℓ, the algorithm computes the sliced 

table that consists of c columns and satisfies the privacy 

requirement of ℓ-diversity. Our algorithm consists of three 

phases: attribute partitioning, column generalization, and 

tuple partitioning. We now describe the three phases. 

 

3.1 Attribute Partitioning 

Our algorithm partitions attributes so that highly-

correlated attributes are in the same column. This is good 

for both utility and privacy. In terms of data utility, 

grouping highly-correlated attributes preserves the 

correlations among those attributes. In terms of privacy, 

the association of uncorrelated attributes presents higher 

identification risks than the association of highly-

correlated attributes because the association of 

uncorrelated attribute values is much less frequent and 

thus more identifiable. Therefore, it is better to break the 

associations between uncorrelated attributes, in order to 

protect privacy. In this phase, we first compute the 

correlations between pairs of attributes and then cluster 

attributes based on their correlations. 
 

3.1.1  Measures of Correlation 

Two widely-used measures of association are Pearson 

correlation coefficient and mean-square contingency 

coefficient. Pearson correlation coefficient is used for 

measuring correlations between two continuous attributes 

while mean square contingency coefficient is a chi-square 

measure of correlation between two categorical attributes. 

We choose to use the mean-square contingency coefficient 

because most of our attributes are categorical. 
 

3.1.2  Attribute Clustering 

Having computed the correlations for each pair of 

attributes, we use clustering to partition attributes into 

columns. In our algorithm, each attribute is a point in the 
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clustering space. Two attributes that are strongly 

correlated will have a smaller distance between the 

corresponding data points in our clustering space. First, 

many existing clustering algorithms (e.g., k- means) 

requires the calculation of the "centroids". But there is no 

notion of "centroids" in our setting where each attribute 

forms a data point in the clustering space. Second, k-

medoid method is very robust to the existence of outliers 

(i.e., data points that are very far away from the rest of 

data points). Third, the order in which the data points are 

examined does not affect the clusters computed from the 

k-medoid method. 

  

We use the well-known k-medoid algorithm PAM 

(Partition Around Medoids). PAM starts by an arbitrary 

selection of k data points as the initial medoids. In each 

subsequent step, PAM chooses one medoid point and one 

non medoid point and swaps them as long as the cost of 

clustering decreases. Here, the clustering cost is measured 

as the sum of the cost of each cluster, which is in turn 

measured as the sum of the distance from each data point 

in the cluster to the medoid point of the cluster 

 

3.1.3  Special Attribute Partitioning 

The k-medoid method ensures that the attributes are 

clustered into k columns but does not have any guarantee 

on the size of the sensitive column Cc. In some cases, we 

may pre-determine the number of attributes in the 

sensitive column to be C . The parameter determines the 

size of the sensitive column Cc. 

If S = 1, then Cc = 1, which means that Cc = S.  And when 

c = 2, slicing in this case becomes equivalent to 

bucketization. If > 1, then Cc > 1, the sensitive column 

also contains some QI attributes. We adapt the above 

algorithm to partition attributes into c columns such that 

the sensitive column Cc contains attributes. We first 

calculate correlations between the sensitive attribute S and 

each QI attribute. 

 

Algorithm tuple-partition(T, ℓ) 

1. Q = {T}; SB= ⱷ.  

2. while Q is not empty  

3. remove the first bucket B from Q; Q = Q-{B}  

4 split B into two buckets B1 and B2, as in Mondrian. 

5. if diversity-check(T,Q U {B1, B2} U SB , ℓ)  

6. Q = QU {B1, B2}  

7. else SB = SB U {B}  

8. return SB.  
 

Figure 1: The tuple partition algorithm 

 

It provides the same level of privacy protection as 

generalization, with respect to attribute disclosure. 

Although column generalization is not a required phase, it 

can be useful in several aspects. First, column 

generalization may be required for identity/ membership 

disclosure protection. If a column value is unique in a 

column (i.e., the column value appears only once in the 

column), a tuple with this unique column value can only 

have one matching bucket. This is not good for privacy 

protection, as in the case of generalization/bucketization 

where each tuple can belong to only one equivalence-

class/bucket.  

 

The main problem is that this unique column value can be 

identifying. In this case, it would be useful to apply 

column generalization to ensure that each column value 

appears with at least some frequency. 

  

Second, when column generalization is applied, to achieve 

the same level of privacy against attribute disclosure, 

bucket sizes can be smaller. While column generalization 

may result in information loss, smaller bucket-sizes allows 

better data utility. Therefore, there is a trade of between 

column generalization and tuple partitioning. In this paper, 

we mainly focus on the tuple partitioning algorithm.  

 

The trade of between column generalization and tuple 

partitioning is the subject of future work. Existing 

anonymization algorithms can be used for column 

generalization, e.g., Mondrian. The algorithms can be 

applied on the sub table containing only attributes in one 

column to ensure the anonymity requirement 

 

3.2 Tuple Partitioning 

In the tuple partitioning phase, tuples are partitioned into 

buckets. We modify the Mondrian algorithm for tuple. 

 

Algorithm diversity-check(T, T , ℓ) 

1. for each tuple t € T , L[t] = ⱷ.  

2. for each bucket B in T  

3. record f (v) for each column value v in bucket B.  

4. for each tuple t € T  

5. calculate p(t, B) and find D(t, B).  

6. L[t] = L[t] U { p (t,B) , D (t, B)} .  

7. for each tuple t € T  

8. calculate p(t, s) for each s based on L[t].  

9. if p(t, s) ≥ 1/ℓ, return false.  

10. return true.  
 

Figure 2: The diversity check algorithm 

 

Each element in the list L[t] contains statistics about one 

matching bucket B: the matching probability p(t, B) and 

the distribution of candidate sensitive values D(t, B). The 

algorithm first takes one scan of each bucket B (line 2 to 

line 3) to record the frequency f (v) of each column value 

v in bucket B.  

 

Then the algorithm takes one scan of each tuple t in the 

table T (line 4 to line 6) to find out all tuples that match B 

and record their matching probability p(t, B) and the 

distribution of candidate sensitive values D(t, B), which 

are added to the list L[t] (line 6). At the end of line 6, we 

have obtained, for each tuple t, the list of statistics L[t] 

about its matching buckets. A final scan of the tuples in T 

will compute the p(t, s) values based on the law of total 

probability. 
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4. EXPERIMENTS 

 

We conduct two experiments. In the first experiment, we 

evaluate the effectiveness of slicing in preserving data 

utility and protecting against attribute disclosure, as 

compared to generalization and bucketization. To allow 

direct comparison, we use the Mondrian algorithm and ℓ-

diversity for all three anonymization techniques: 

generalization, bucketization, and slicing. This experiment 

demonstrates that: slicing is more effective than 

bucketization in workloads involving the sensitive 

attribute; and the sliced table can be computed efficiently. 

 

In the second experiment, we show the effectiveness of 

slicing in membership disclosure protection. For this 

purpose, we count the number of fake tuples in the sliced 

data. We also compare the number of matching buckets 

for original tuples and that for fake tuples. Our experiment 

results show that bucketization does not prevent 

membership disclosure as almost every tuple is uniquely 

identified. Slicing provides better protection against 

membership disclosure: The number of fake tuples in the 

sliced data is very large, as compared to the number of 

original tuples and the number of matching buckets for 

fake tuples and that for original tuples are close enough, 

which makes it difficult for the adversary to distinguish 

fake tuples from original tuples. 

 

5. RELATED WORK 

 

Two popular anonymization techniques are generalization 

and bucketization. Generalization replaces a value with a 

"less-specific but semantically consistent" value. Three 

types of encoding schemes have been proposed for 

generalization: global recoding, regional recoding, and 

local recoding. Global recoding has the property that 

multiple occurrences of the same value are always 

replaced by the same generalized value. Regional record is 

also called multi-dimensional recoding (the Mondrian 

algorithm) which partitions the domain space into non-

intersect regions and data points in the same region are 

represented by the region they are in. Local recoding does 

not have the above constraints and allows different 

occurrences of the same value to be generalized 

differently. Bucketization first partitions tuples in the table 

into buckets and then separates the quasi-identifiers with 

the sensitive attribute by randomly permuting the sensitive 

attribute values in each bucket. The anonymized data 

consists of a set of buckets with permuted sensitive 

attribute values. 

 

6. DISCUSSIONS AND FUTURE WORK 

 

This paper presents a new approach called slicing to 

privacy preserving microdata publishing. Slicing 

overcomes the limitations of generalization and 

bucketization and preserves better utility while protecting 

against privacy threats. We illustrate how to use slicing to 

prevent attribute disclosure and membership disclosure. 

Our experiments show that slicing preserves better data 

utility than generalization and is more effective than 

bucketization in workloads involving the sensitive 

attribute. The general methodology proposed by this work 

is that before anonymizing the data, one can analyze the 

data characteristics and use these characteristics in data 

anonymization. 

  

The rationale is that one can design better data 

anonymization techniques when we know the data better. 

This work motivates several directions for future research. 

First, in this paper, we consider slicing where each 

attribute is in exactly one column. An extension is the 

notion of overlapping slicing, which duplicates an attribute 

in more than one columns. This releases more attribute 

correlations. For example, one could choose to include the 

Disease attribute also in the first column. That is, the two 

columns are Age, Sex, Disease and Zipcode, Disease. This 

could provide better data utility, but the privacy 

implications need to be carefully studied and understood. 

It is interesting to study the trade of between privacy and 

utility. Second, we plan to study membership disclosure 

protection in more details. Our experiments show that 

random grouping is not very effective. We plan to design 

more effective tuple grouping algorithms.Third, slicing is 

a promising technique for handling high dimensional data. 

By partitioning attributes into columns, we protect privacy 

by breaking the association of uncorrelated attributes and 

preserve data utility by preserving the association between 

highly correlated attributes. 

 

For example, slicing can be used for anonymizing 

transaction databases. Finally, while a number of 

anonymization techniques have been designed, it remains 

an open problem on how to use the anonymized data. In 

our experiments, we randomly generate the associations 

between column values of a bucket. This may lose data 

utility. 
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