
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6382 358

Micro data Privacy Preserving Using Slicing

S. Bhuvanesh
1
, V.N. Anushya

1
, A.X. Suganya Gladies

1
, M. Vignesh

1

Assistant Professor, Department of Computer Science and Engineering, Dhaanish Ahmed Institute of Technology,

Coimbatore
1

Abstract: Several anonymization techniques, such as generalization and bucketization, have been designed for privacy

preserving microdata publishing. Recent work has shown that generalization loses considerable amount of information,

especially for high dimensional data. Bucketization, on the other hand, does not prevent membership disclosure and

does not apply for data that do not have a clear separation between quasi identifying attributes and sensitive attributes.

In this paper, we present a novel technique called slicing, which partitions the data both horizontally and vertically. We

show that slicing preserves better data utility than generalization and can be used for membership disclosure protection.

Another important advantage of slicing is that it can handle high-dimensional data. We show how slicing can be used

for attribute disclosure protection and develop an efficient algorithm for computing the sliced data that obey the ℓ-

diversity requirement. Our workload experiments confirm that slicing preserves better utility than generalization and is

more effective than bucketization in workloads involving the sensitive attribute. Our experiments also demonstrate that

slicing can be used to prevent membership disclosure.

Keywords: Microdata, Anonymization, Bucketization, Membership Disclosure, Slicing.

1. INTRODUCTION

Privacy-preserving publishing of microdata has been

studied extensively in recent years. Microdata contains

records each of which contains information about an

individual entity, such as a person, a household, or an

organization. Several microdata anonymization techniques

have been pro- posed. The most popular ones are

generalization for k-anonymity and bucketization for ℓ-

diversity. In both approaches, attributes are partitioned

into three categories: some attributes are identifiers that

can uniquely identify an individual, such as Name or

Social Security Number; some attributes are Quasi

Identifiers (QI), which the adversary may already know

(possibly from other publicly-available databases) and

which, when taken together, can potentially identify an

individual, e.g., Birth-date, Sex, and Zipcode; (3) some

attributes are Sensitive Attributes (SAs), which are

unknown to the adversary and are considered sensitive,

such as Disease and Salary. In both generalization and

bucketization, one first removes identifiers from the data

and then partitions tuples into buckets. The two techniques

differ in the next step. Generalization transforms the QI-

values in each bucket into "less specific but semantically

consistent" values so that tuples in the same bucket cannot

be distinguished by their QI values.

1.1 Motivation of Slicing

It has been shown that generalization for k- anonymity

losses considerable amount of information, especially for

high-dimensional data. This is due to the following three

reasons. First, generalization for k-anonymity suffers from

the curse of dimensionality. In order for generalization to

be effective, records in the same bucket must be close to

each other so that generalizing the records would not lose

too much information. However, in high-dimensional data,

most data points have similar distances with each other,

forcing a great amount of generalization to satisfy k-

anonymity even for relative small k's. Second, in order to

perform data analysis or data mining tasks on the

generalized table, the data analyst has to make the uniform

distribution assumption that every value in a generalized

interval/set is equally possible, as no other distribution

assumption can be justified. This significantly reduces the

data utility of the generalized data. Third, because each

attribute is generalized separately, correlations between

different attributes are lost.

In order to study attribute correlations on the generalized

table, the data analyst has to assume that every possible

combination of attribute values is equally possible. This is

an inherent problem of generalization that prevents

effective analysis of attribute correlations.

While bucketization has better data utility than

generalization, it has several limitations. First,

bucketization does not prevent membership disclosure.

Because bucketization publishes the QI values in their

original forms, an adversary can find out whether an

individual has a record in the published data or not. As

shown in, 87% of the individuals in the United States can

be uniquely identified using only three attributes

(Birthdate, Sex, and Zipcode).

A microdata (e.g., census data) usually contains many

other attributes besides those three attributes. This means

that the membership information of most individual can be

inferred from the bucketized table. Second, bucketization

requires a clear separation between QIs and SAs.

However, in many datasets, it is unclear which attributes

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6382 359

are QIs and which are SAs. Third, by separating the

sensitive attribute from the QI attributes, bucketization

breaks the attribute correlations between the QIs and the

SAs. In this paper, we introduce a novel data

anonymization technique called slicing to improve the

current state of the art. Slicing partitions the dataset both

vertically and horizontally. Vertical partitioning is done by

grouping attributes into columns based on the correlations

among the attributes. Each column contains a subset of

attributes that are highly correlated. Horizontal

partitioning is done by grouping tuples into buckets.

Finally, within each bucket, values in each column are

randomly permutated (or sorted) to break the linking

between different columns. The basic idea of slicing is to

break the association cross columns, but to preserve the

association within each column. This reduces the

dimensionality of the data and pre- serves better utility

than generalization and bucketization.

Slicing preserves utility because it groups highly-

correlated attributes together, and preserves the

correlations between such attributes. Slicing protects

privacy because it breaks the associations between

uncorrelated attributes, which are infrequent and thus

identifying is better than the following enhancement of the

local recoding approach. Rather than using a generalized

value to re- place more specific attribute values, one uses

the multiset of exact values in each bucket. The multiset of

exact values provides more information about the

distribution of values in each attribute than the generalized

interval. Therefore, using multisets of exact values

preserves more information than generalization.

However, we observe that this multiset based

generalization is equivalent to a trivial slicing scheme

where each column contains exactly one attribute, because

both approaches preserve the exact values in each attribute

but break the association between them within one bucket.

We observe that while one attribute per column slicing

preserves attribute distributional information, it does not

preserve attribute correlation, because each attribute is in

its own column. In slicing, one groups correlated attributes

together in one column and preserves their correlation.

2. SLICING

In this section, we first give an example to illustrate

slicing. We then formalize slicing, compare it with

generalization and bucketization, and discuss privacy

threats that slicing can address. The original table is shown

in Table 1. The three QI attributes are {Age, Sex ,

Zipcode}, and the sensitive attribute SA is Disease. For

example, in the first bucket of the sliced table shown in

Table 2, the values {(22, M), (22, F), (33, F), (52, F)}

are randomly permutated and the values {(47906,

dyspepsia), (47906, flu), (47905, flu), (47905, bronchitis

)} are randomly permutated so that the linking between the

two columns within one bucket is hidden.

Table 1. The Original Table

 Age Sex Zip code Disease

 22 M 47906 dyspepsia

 22 F 47906 flu

 33 F 47905 flu

 52 F 47905 bronchitis

 54 M 47302 flu

 60 M 47302 dyspepsia

 60 M 47304 dyspepsia

 64 F 47304 gastritis

 Table 2. The Sliced Table

 (Age, Sex) (Zip code, Disease)

 (22, M) (47905,flu)

 (22, F) (47906,dysp.)

 (33, F) (47905,bron.)

 (52, F) (47906,flu)

 (54, M) (47304,gast.)

 (60, M) (47302,flu)

 (60, M) (47302,dysp.)

 (64, F) (47304,dysp.)

2.1 Comparison with Generalization

There are several types of recordings for generalization.

The recoding that preserves the most information is local

recoding. In local recoding, one first groups tuples into

buckets and then for each bucket, one replaces all values

of one attribute with a generalized value. Such a recoding

is local because the same attribute value may be

generalized differently when they appear in different

buckets.

2.2 Comparison with Bucketization

To compare slicing with bucketization, we first note that

bucketization can be viewed as a special case of slicing.

There are exactly two columns: one column contains only

the SA, and the other contains all the QIs. The advantages

of slicing over bucketization can be understood as follows.

First, by partitioning attributes into more than two

columns, slicing can be used to prevent membership

disclosure. Our empirical evaluation on a dataset shows

bucketization does not prevent membership disclosure.

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6382 360

Second, unlike bucketization, which requires a clear

separation of QI attributes and the sensitive attribute,

slicing can be used without such a separation. For dataset

such as the census data, one often cannot clearly separate

QIs from SAs because there is no single external public

database that one can use to determine which attributes the

adversary already knows. Slicing can be useful for such

data.

Finally, by allowing a column to contain both some QI

attributes and the sensitive attribute, attribute correlations

between the sensitive attribute and the QI attributes are

preserved. For example, Zipcode and Disease form one

column, enabling inferences about their correlations.

Attribute correlations are important utility in data

publishing. For workloads that consider attributes in

isolation, one can simply publish two tables, one

containing all QI attributes and one containing the

sensitive attribute.

2.3 Privacy Threats

When publishing microdata, there are three types of

privacy disclosure threats. The first type is membership

disclosure. When the dataset to be published is selected

from a large population and the selection criteria are

sensitive (e.g., only diabetes patients are selected). one

needs to prevent adversaries from learning whether one's

record is included in the published dataset. The second

type is identity disclosure, which occurs when an

individual is linked to a particular record in the released

table.

In some situations, one wants to protect against identity

disclosure when the adversary is uncertain of member-

ship. In this case, protection against membership

disclosure helps protect against identity disclosure. In

other situations, some adversary may already know that an

individual's record is in the published dataset, in which

case, membership disclosure protection either does not

apply or is insufficient.

The third type is attribute disclosure, which occurs when

new information about some individuals is revealed, i.e.,

the released data makes it possible to infer the attributes of

an individual more accurately than it would be possible

before the release. Similar to the case of identity

disclosure, we need to consider adversaries who already

know the membership information. Identity disclosure

leads to attribute disclosure. Once there is identity

disclosure, an individual is re-identified and the

corresponding sensitive value is revealed. Attribute

disclosure can occur with or without identity disclosure,

e.g., when the sensitive values of all matching tuples are

the same. For slicing, we consider protection against

membership disclosure and attribute disclosure.

It is a little unclear how identity disclosure should be

defined for sliced data (or for data anonymized by

bucketization), since each tuple resides within a bucket

and within the bucket the association across different

columns are hidden. In any case, because identity

disclosure leads to attribute disclosure, protection against

attribute disclosure is also sufficient protection against

identity disclosure.

We would like to point out a nice property of slicing that

is important for privacy protection. In slicing, a tuple can

potentially match multiple buckets, i.e., each tuple can

have more than one matching buckets.

This is different from previous work on generalization and

bucketization. In fact, it has been recognized that

restricting a tuple in a unique bucket helps the adversary

but does not improve data utility. We will see that

allowing a tuple to match multiple buckets is important for

both attribute disclosure protection and attribute disclosure

protection.

3. SLICING ALGORITHMS

We now present an efficient slicing algorithm to achieve

ℓ-diverse slicing. Given a microdata table T and two

parameters c and ℓ, the algorithm computes the sliced

table that consists of c columns and satisfies the privacy

requirement of ℓ-diversity. Our algorithm consists of three

phases: attribute partitioning, column generalization, and

tuple partitioning. We now describe the three phases.

3.1 Attribute Partitioning

Our algorithm partitions attributes so that highly-

correlated attributes are in the same column. This is good

for both utility and privacy. In terms of data utility,

grouping highly-correlated attributes preserves the

correlations among those attributes. In terms of privacy,

the association of uncorrelated attributes presents higher

identification risks than the association of highly-

correlated attributes because the association of

uncorrelated attribute values is much less frequent and

thus more identifiable. Therefore, it is better to break the

associations between uncorrelated attributes, in order to

protect privacy. In this phase, we first compute the

correlations between pairs of attributes and then cluster

attributes based on their correlations.

3.1.1 Measures of Correlation

Two widely-used measures of association are Pearson

correlation coefficient and mean-square contingency

coefficient. Pearson correlation coefficient is used for

measuring correlations between two continuous attributes

while mean square contingency coefficient is a chi-square

measure of correlation between two categorical attributes.

We choose to use the mean-square contingency coefficient

because most of our attributes are categorical.

3.1.2 Attribute Clustering

Having computed the correlations for each pair of

attributes, we use clustering to partition attributes into

columns. In our algorithm, each attribute is a point in the

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6382 361

clustering space. Two attributes that are strongly

correlated will have a smaller distance between the

corresponding data points in our clustering space. First,

many existing clustering algorithms (e.g., k- means)

requires the calculation of the "centroids". But there is no

notion of "centroids" in our setting where each attribute

forms a data point in the clustering space. Second, k-

medoid method is very robust to the existence of outliers

(i.e., data points that are very far away from the rest of

data points). Third, the order in which the data points are

examined does not affect the clusters computed from the

k-medoid method.

We use the well-known k-medoid algorithm PAM

(Partition Around Medoids). PAM starts by an arbitrary

selection of k data points as the initial medoids. In each

subsequent step, PAM chooses one medoid point and one

non medoid point and swaps them as long as the cost of

clustering decreases. Here, the clustering cost is measured

as the sum of the cost of each cluster, which is in turn

measured as the sum of the distance from each data point

in the cluster to the medoid point of the cluster

3.1.3 Special Attribute Partitioning

The k-medoid method ensures that the attributes are

clustered into k columns but does not have any guarantee

on the size of the sensitive column Cc. In some cases, we

may pre-determine the number of attributes in the

sensitive column to be C . The parameter determines the

size of the sensitive column Cc.

If S = 1, then Cc = 1, which means that Cc = S. And when

c = 2, slicing in this case becomes equivalent to

bucketization. If > 1, then Cc > 1, the sensitive column

also contains some QI attributes. We adapt the above

algorithm to partition attributes into c columns such that

the sensitive column Cc contains attributes. We first

calculate correlations between the sensitive attribute S and

each QI attribute.

Algorithm tuple-partition(T, ℓ)

1. Q = {T}; SB= ⱷ.

2. while Q is not empty

3. remove the first bucket B from Q; Q = Q-{B}

4 split B into two buckets B1 and B2, as in Mondrian.

5. if diversity-check(T,Q U {B1, B2} U SB , ℓ)

6. Q = QU {B1, B2}

7. else SB = SB U {B}

8. return SB.

Figure 1: The tuple partition algorithm

It provides the same level of privacy protection as

generalization, with respect to attribute disclosure.

Although column generalization is not a required phase, it

can be useful in several aspects. First, column

generalization may be required for identity/ membership

disclosure protection. If a column value is unique in a

column (i.e., the column value appears only once in the

column), a tuple with this unique column value can only

have one matching bucket. This is not good for privacy

protection, as in the case of generalization/bucketization

where each tuple can belong to only one equivalence-

class/bucket.

The main problem is that this unique column value can be

identifying. In this case, it would be useful to apply

column generalization to ensure that each column value

appears with at least some frequency.

Second, when column generalization is applied, to achieve

the same level of privacy against attribute disclosure,

bucket sizes can be smaller. While column generalization

may result in information loss, smaller bucket-sizes allows

better data utility. Therefore, there is a trade of between

column generalization and tuple partitioning. In this paper,

we mainly focus on the tuple partitioning algorithm.

The trade of between column generalization and tuple

partitioning is the subject of future work. Existing

anonymization algorithms can be used for column

generalization, e.g., Mondrian. The algorithms can be

applied on the sub table containing only attributes in one

column to ensure the anonymity requirement

3.2 Tuple Partitioning

In the tuple partitioning phase, tuples are partitioned into

buckets. We modify the Mondrian algorithm for tuple.

Algorithm diversity-check(T, T , ℓ)

1. for each tuple t € T , L[t] = ⱷ.

2. for each bucket B in T

3. record f (v) for each column value v in bucket B.

4. for each tuple t € T

5. calculate p(t, B) and find D(t, B).

6. L[t] = L[t] U { p (t,B) , D (t, B)} .

7. for each tuple t € T

8. calculate p(t, s) for each s based on L[t].

9. if p(t, s) ≥ 1/ℓ, return false.

10. return true.

Figure 2: The diversity check algorithm

Each element in the list L[t] contains statistics about one

matching bucket B: the matching probability p(t, B) and

the distribution of candidate sensitive values D(t, B). The

algorithm first takes one scan of each bucket B (line 2 to

line 3) to record the frequency f (v) of each column value

v in bucket B.

Then the algorithm takes one scan of each tuple t in the

table T (line 4 to line 6) to find out all tuples that match B

and record their matching probability p(t, B) and the

distribution of candidate sensitive values D(t, B), which

are added to the list L[t] (line 6). At the end of line 6, we

have obtained, for each tuple t, the list of statistics L[t]

about its matching buckets. A final scan of the tuples in T

will compute the p(t, s) values based on the law of total

probability.

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6382 362

4. EXPERIMENTS

We conduct two experiments. In the first experiment, we

evaluate the effectiveness of slicing in preserving data

utility and protecting against attribute disclosure, as

compared to generalization and bucketization. To allow

direct comparison, we use the Mondrian algorithm and ℓ-

diversity for all three anonymization techniques:

generalization, bucketization, and slicing. This experiment

demonstrates that: slicing is more effective than

bucketization in workloads involving the sensitive

attribute; and the sliced table can be computed efficiently.

In the second experiment, we show the effectiveness of

slicing in membership disclosure protection. For this

purpose, we count the number of fake tuples in the sliced

data. We also compare the number of matching buckets

for original tuples and that for fake tuples. Our experiment

results show that bucketization does not prevent

membership disclosure as almost every tuple is uniquely

identified. Slicing provides better protection against

membership disclosure: The number of fake tuples in the

sliced data is very large, as compared to the number of

original tuples and the number of matching buckets for

fake tuples and that for original tuples are close enough,

which makes it difficult for the adversary to distinguish

fake tuples from original tuples.

5. RELATED WORK

Two popular anonymization techniques are generalization

and bucketization. Generalization replaces a value with a

"less-specific but semantically consistent" value. Three

types of encoding schemes have been proposed for

generalization: global recoding, regional recoding, and

local recoding. Global recoding has the property that

multiple occurrences of the same value are always

replaced by the same generalized value. Regional record is

also called multi-dimensional recoding (the Mondrian

algorithm) which partitions the domain space into non-

intersect regions and data points in the same region are

represented by the region they are in. Local recoding does

not have the above constraints and allows different

occurrences of the same value to be generalized

differently. Bucketization first partitions tuples in the table

into buckets and then separates the quasi-identifiers with

the sensitive attribute by randomly permuting the sensitive

attribute values in each bucket. The anonymized data

consists of a set of buckets with permuted sensitive

attribute values.

6. DISCUSSIONS AND FUTURE WORK

This paper presents a new approach called slicing to

privacy preserving microdata publishing. Slicing

overcomes the limitations of generalization and

bucketization and preserves better utility while protecting

against privacy threats. We illustrate how to use slicing to

prevent attribute disclosure and membership disclosure.

Our experiments show that slicing preserves better data

utility than generalization and is more effective than

bucketization in workloads involving the sensitive

attribute. The general methodology proposed by this work

is that before anonymizing the data, one can analyze the

data characteristics and use these characteristics in data

anonymization.

The rationale is that one can design better data

anonymization techniques when we know the data better.

This work motivates several directions for future research.

First, in this paper, we consider slicing where each

attribute is in exactly one column. An extension is the

notion of overlapping slicing, which duplicates an attribute

in more than one columns. This releases more attribute

correlations. For example, one could choose to include the

Disease attribute also in the first column. That is, the two

columns are Age, Sex, Disease and Zipcode, Disease. This

could provide better data utility, but the privacy

implications need to be carefully studied and understood.

It is interesting to study the trade of between privacy and

utility. Second, we plan to study membership disclosure

protection in more details. Our experiments show that

random grouping is not very effective. We plan to design

more effective tuple grouping algorithms.Third, slicing is

a promising technique for handling high dimensional data.

By partitioning attributes into columns, we protect privacy

by breaking the association of uncorrelated attributes and

preserve data utility by preserving the association between

highly correlated attributes.

For example, slicing can be used for anonymizing

transaction databases. Finally, while a number of

anonymization techniques have been designed, it remains

an open problem on how to use the anonymized data. In

our experiments, we randomly generate the associations

between column values of a bucket. This may lose data

utility.

REFERENCES

[1] Asuncion and D. Newman. 2007. UCI machine learning repository.

[2] Blum, C. Dwork, F. McSherry, and K. Nissim. 2005. Practical
privacy: the sulq framework. In PODS, pages 128-138.

[3] J. Brickell and V. Shmatikov. 2008. The cost of privacy:

destruction of data-mining utility in anonymized data publishing. In
KDD, pages 70-78.

[4] B.C. Chen, R. Ramakrishnan, and K. LeFevre. 2007. Privacy

skyline: Privacy with multidimensional adversarial knowledge. In
VLDB, pages 770-781, [5] H. Cramt'er. Mathematical Methods of

Statistics.Princeton, 1948.

[5] Dinur and K. Nissim. 2003. Revealing information while
preserving privacy. In PODS, pages 202-210.

[6] Dwork. Differential privacy.2006. In ICALP, pages 1-12.

