
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6383 363

Critical Review of the Bunch: A Well-Known

Tool for the Recovery and Maintenance of

Software System Structures

Mahjoubeh Tajgardan
1
, Habib Izadkhah

2

Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
1, 2

Abstract: Lack of up-to-date software documentation hinders the software evolution and maintenance processes, as

simply the software structure and code could be easily misunderstood and not comprehended. One approach to

overcome such problems is to extract and reconstruct the software structure from the available source code so that it

can be assessed against the required changes. Such approach is known as Software clustering. Bunch is a well-known

tool for structure reconstructing and maintaining of software systems. As the maintenance of software costs a lot,

Bunch is usually employed to reconstruct the structure of software and consequently making required changes. The aim

of this paper is to investigate the strengths and weaknesses of the Bunch; if problems and proposals offered in this

paper are studied and solved, this tool will be turned to be a useful tool for structure recovering and maintenance of a

software system.

Keywords: Software System; Software Structure; Bunch; Software maintenance.

I. INTRODUCTION

Many of businesses, governments, and social institutions

are software-related work to do. When the requirements of

these institutions change, the software must to adapt itself

to it. Changing large and complex software systems,

which can be thousands or even millions of lines of code,

can be quite difficult. During software maintenance and

evolution processes, the actual software architecture could

deviate from the originally documented architecture in

order to fulfill the changing business requirements. Such

architecture changes are not necessarily well documented,

and in some extreme cases are not documented at all, as in

legacy software systems. This of course leads to software

miscomprehension, which hinders the software future

evolution and maintenance processes. Muller, et al.,

(1995) shows that 50–90% of software evolution work

focuses on program comprehension. Therefore, program

comprehension plays an important role in software

development [1]. Comprehending the available program is

possible through preparing a design attribute such as

software architecture [2].

Bunch proposed by Mitchell in his Ph. D thesis [3, 4].

Bunch is a clustering tool that provides developers higher-

level structural information about the numerous software

subsystems (or modules, i.e. a number of interrelated

classes), their interfaces, and their interconnections for

better understanding of software structure to maintain and

apply changes. In this tool, subsystems can also be

organized hierarchically, allowing developers to study the

structure of a system at various levels of detail by

navigating through the hierarchy. The main reason of

choosing the Bunch is that this tool is widely used in

software industry and is applied as base software in order

to compare other algorithms; also to date it has been cited

over 300 times by other researchers.

II. OVERVIEW OF THE BUNCH

Fig. 1 shows the structure of the Bunch toolset.

Fig. 1 Structure of Bunch tool

As indicated in Fig. 1, the extraction steps through Bunch

are as follows: first, the source code is analyzed and then

call graph is generated from it. Bunch uses Acacia

algorithm to generate Class Dependency Graph (CDG) for

C++ programming language and Chava for JAVA

programming language. Second, after the call graph

generation, it clustered using genetic algorithm to find an

appropriate structure. In Bunch, the aim of clustering is

minimizing connections between the classes of two

different modules (called coupling), as well as maximizing

connections between the classes of the same module

(called cohesion). Generally, low coupling and high

cohesion are considered as characteristics of well-designed

software systems [5]. For this purpose, there exist two

functions named BasicMQ and TurboMQ for computing

quality of obtained clustering in Bunch. If Ai is internal

connection level for a module and Eij represents

connection level between two modules “i” and “j”, then

having a program graph divided to “k” modules, BasicMQ

is defined as follows:

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6383 364

 
 iji E

kk
A

k

2

)1(

11
basicMQ

 (1)

Definitely, the clustering that increases the value of this

function would enjoy higher quality. BasicMQ criterion is

bounded in the interval between -1 (no cohesion in

subsystems) and 1 (no coupling between subsystems). If

CDG has |V| classes and |E| dependencies, the

computational complexity of BasicMQ will be:

|)||(| 2 EVO  . Efficiency of this criterion is low

because of having high operational costs limiting its

application to small systems (systems having less than 75

modules).

 TurboMQ criterion has been designed to overcome

limitations of BasicMQ. If the internal edges of module

and edges between two modules are respectively

represented by i and ji , , TurboMQ value will be then

computed as follows:





k

i

iCFTurboMQ
1

 (2)






















otherwiseMF
k

j

ijjii

i

i

i

1

,,)(2

2

00







 (3)

Third, Due to the heuristic nature of Bunch, it may

produce results with the same quality but different

clustering for different runs on a given graph. In different

clustering process, is observed regular displacement of

several classes between different modules while other

classes displace less. Bunch represents software structure

more precisely upon results of numerous clustering by an

algorithm or several different algorithms and derivation of

common patterns of them. The Bunch uses

Precision/Recall for this purpose. This criterion, measures

the similarity between two clustering based on co-modules

pairs in clustering. Supposing we want to compare two A

and B clustering, precision will be the percent of co-

module pairs in A that also are co-module in B, and recall

is the percent of co-module pairs in B that also are co-

module in A. In these criteria, maximum Precision is the

prior one. If this value was the same for two modules,

modularization should include less Recall. Forth, Bunch

can show obtained structure as a graph or in UML.

III. CALL DEPENDENCY GRAPH ALGORITHM IN

BUNCH

The input of Bunch is the CDG generated from the source

code. As mentioned in Section 2, Bunch uses Acacia and

Chava to generate CDG. Main problems of these

algorithms are that they do not consider the implicit calls

in designing. These algorithms could not construct CDG

precisely when a source code includes implicit calls. Fig. 2

shows pseudo code, which does not include implicit call

while Fig. 3 shows implicit call in a pseudo code. In Fig.

2, declared type for variable “a” is class “A” and “a”

instantiated of class “A”. Thus call destination a.method1(

) is considered class “A”. While in Fig. 3, declared type of

“a” is class “A but “a” instantiated of class “B”. Thus, call

destination a.method1() should be considered class “B”

not class “A”. In such cases, existing algorithms consider

both classes as call destination. In fact, dependence graph

is produced pessimistic. This kind of call is called implicit

call. Consider the code in Fig. 4.

Fig. 2 A pseudocode without implicit call

Fig. 3 A pseudocode includes an implicit call

class A {…. }

class B extends A {…. }

class C{

 public void m1(){

 A b=new B();

 b. m();

 }

 }//class c

class main_Class{

 public Static void main(){

 A a=new A();

 a. m();

 C c=new C();

 c. m1();

Class A {
 Public void method1 (){ print (“This is A”);}

 }

Class B extends A {

 Public void method1 (){ print (“This is B”);}

 }

Class C extends A {
 Public void method1 (){ print (“This is C”);}

 }

Class Main {
Public void method2 (){

 A a;

 a=new A ();
 a.method1 ();

 }

}

Class A {

 Public void method1 (){ print (“This is A”);}
 }

Class B extends A {

 Public void method1 (){ print (“This is B”);}
 }

Class C extends A {

 Public void method1 (){ print (“This is C”);}
 }

Class Main {

Public void method2 (){
 A a;

 a=new B ();

 a.method1 (); // implicitly calls
 }

}

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6383 365

 }//main

 }//main_class

Fig. 4 Example of source code

Fig. 5 shows CDG generated for Fig. 4 by Chava

algorithm. This graph constructed so pessimistically.

Fig. 5 CDG generated for Fig. 4 by chava algorithm

Fig. 6 Appropriate CDG for Fig. 4

The appropriate CDG for Fig. 4 has shown in Fig. 6.

Algorithms used for constructing act pessimistically.

These algorithms construct the CDG conservatively and

do not eliminate any probable call from the graph. As a

result, the obtained CDG will have so many edges and will

have negative impact on the clustering result in Bunch.

The reason for this is that the aim of clustering is to make

sub-systems with maximum cohesion and minimum

coupling and whatever the number of edges in a graph is

much more, making sub-systems that can be organized as

cohesive modules that are loosely inter-connected will be

more complex and also will slow down finding proper

architecture.

IV. CLUSTERING ALGORITHM IN BUNCH

The general problem of graph partitioning (of which

software clustering is a special case) is NP-hard [4]. For

this reason, Bunch uses search-based technique for

clustering. Since searching the complete state space turns

the situation into a NP-Hard problem, in the Bunch genetic

algorithm is used for finding the optimal or near optimal

software structure during a reasonable time. Search

operation is carried out using criteria of maximal cohesion

and minimal coupling of clusters.

 Efficient behavior of a genetic algorithm depends on

proper design of encoding. Each node in the CDG has a

unique numerical identifier assigned to it (e.g., node N1 is

assigned the unique identifier 1, node N2 is assigned the

unique identifier 2, and so on). These unique identifiers

define which position in the encoded string is used to

define that node's cluster. Suppose S: = 2 2 4 4 1;

therefore, the first character in S, i.e., 2, indicates that the

first node (N1) is contained in the cluster labeled 2.

Likewise, the second node (N2) is also contained in the

cluster labeled 2, and so on. Formally, an encoding on a

string S is defined as:

S = s1 s2 s3 s4 … sN (4)

Where N is the number of nodes in the CDG and si

identifies the cluster that contains the i
th

 node of the graph.

 One of the important issues related to the Bunch

algorithm is largeness of search space due to presence of

some repetitive answers, i.e. although some generated

codes have apparently different representations, but in

reality, they represent the same partition. For example,

though two chromosomes S1= 2 2 4 4 1 and S2=1 1 5 5 3

have different appearances but they are actually

representative of the same partition. Because, in both,

there are three modules so that nodes of N1 and N2 are in

same module, nodes of N3 and N4 are in same module and

node node N5, located in distinct module. Search space in

Bunch algorithm is n
n
; this large search space decelerates

speed of this algorithm to find appropriate structure. The

state space of n
n
 is the worst state for a problem. State

space search in this state is impossible in a rational time.

Such state space would cause doubt in finding a good

structure for software by Bunch. We believe that we can

reduce it using an appropriate representation (i.e.

encoding). For example, if we use the following

representation (Fig. 7), the state space will be reduced to

n!. This significant reduction may have a significant effect

on improvement of the quality of achieved structure.

 Here, m
th

 cell of array (encoding) represents the class

number “m” of the call graph. Its content includes number

of another node of graph like “p” and if “p” is equal or

greater than “m”, then “m” is placed in a new module;

otherwise “m” belongs to the same module as “p”.

Fig. 7 Chromosome structure and modules obtained from

encoding

A. Computing the Quality of module

As mentioned is Section 2, Bunch uses BasicMQ and

TurboMQ functions to calculate the quality of the obtained

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6383 366

modules. To calculate this function should be calculated

internal and external communications of a module. In

general, there are three types of relationships between

classes as follow:

- Aggregation: are of the form class-attribute as a

class D is the field of class M.

- Class-method: in this case, class D is the type of

a parameter of method mc of a class C, or if a class D is

the return type of method mc.

- Method-method: in this case, method md of a

class D directly invokes a method mc of a class C, or a

method md receives via parameter a pointer to mc thereby

invoking mc indirectly.

In TurboMq, is considered same the influence of all kinds

of relations among modules. But, we think that

Aggregation is more important than class-method and the

significance of this relation is higher comparing with

method-method. Hence, it is recommended to consider

their impact on clustering different. In other word, beside

their number, their weight should be taken into account

according to the rate of value as well. The reason is that If

have two classes, Aggregation relationship, they should be

clustered in same module. Thus, we suggest the MFm can

be calculated as follow.

   



   






3

1 1

3

1

3

1

,,

3

1

|))(||)(|(|)|(2

|)|(2

i

k

i p p

pijppjipii

i

ii

m

CwCwCw

Cw

MF
 (5)

C1= class-attribute and |C1|= number of class-attributes in

the source code, w1= weight of C1

C2= class-method and |C2|= number of class-methods in

the source code, w2= weight of C2

C3= method-method and |C3|= number of method-methods

in the source code, w3= weight of C3

|Ci,j| is the representative of call numbers from module i to

module j and |Cj,i| is the representative of call numbers

from module j to module i.

V. CONSOLIDATED MODEL IN BUNCH

As mentioned in Section 2, Bunch uses Precision/Recall to

improve the quality of the obtained modulus. The problem

here is that criterion value is susceptible to size and

number of modules and sometimes would lead to less

precise result. Suppose that the main structure of a system

is as Fig. 8(a). Also suppose Fig. 8(b), 8(c), and 8(d) are

the obtained structure from a clustering algorithm.

Precision/Recall value of each structure has been written

beneath it. The obtained Precision/Recall value for Fig.

8(c), shows that it is the most similar structure to

Fig. 8(a) structure, But unlike results of Precision/Recall,

Fig. 8(b) is the closest structure to the main structure.

Because, the only difference between Fig. 8(b) and Fig.

8(a) is that class c4, which has been moved to cluster B2.

We propose to overcome this problem in Bunch; it uses

harmonic mean of Precision/Recall. Harmonic mean of

Precision/Recall is calculated as relation 6.

callecision

callecision
FM

RePr

Re*Pr
2


 (6)

Now, if Fm is calculated for each clustering in Fig. 8, it is

observed that 8(b) has the maximum Fm value and the

closest structure to the main structure, too.

VI. OTHER CASES

There is an idea that by adding the following cases to the

Bunch, it would be more efficient:

1- We believe that user should interfere in clustering

process and lead it to his/her interests, some of which

includes the following cases:

1) Setting upper bound and lower bound on the number of

modules,

2) Two or more specific classes sharing the same module,

3) Two or more specific classes not appearing in the same

module,

4) Limiting the sizes of the modules,

5) Bounds on the number of classes in each module.

Above-mentioned cases can be added as constraint to

Bunch objective function. This is achieved by using a

general penalty function. Penalty function can be defined

as normal distribution function.

2- Program clustering plays an important role in

automatic distribution of sequential code. We believe that

maximum cohesion and minimum coupling criteria are not

appropriate for the evaluation of the quality of the

architecture of distributed codes. This kind of architecture

is aimed at achieving the shortest execution time by

maximizing the degree of concurrency in execution of the

distributed code. We think to achieve the maximum

possible speed up, should changed the Bunch objective

function. Bunch objective function shall maximize

asynchrony calls and minimize synchrony calls.

Clustering of source code will be in a way to improve

security of software system instead of obtaining maximum

cohesion and minimum coupling, which is the objective of

classic architecture. Istehad Chowdhury, et al. [6] in their

research on Mozilla Firefox empirically shows that a

significant relationship exists between coupling and

security. In Our opinion if we derive five coupling

dependencies, namely data, control, content, common and

stamp, from source code, then dependency of these criteria

and security can be defined as a mathematical relation.

This relation could be used as objective function for

clustering based on security.

VII. CONCLUSION

In this paper, we evaluated the Bunch, a well-known tool

for recovering the structure of a software system. It

consists of three steps: the call graph generation, genetic

algorithm for clustering and consolidated model. The main

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6383 367

problem of this tool in generation of call graph is that it

cannot identify the implicit calls from the program. So,

call graph is produced pessimistically which has reverse

impact on clustering results. On the other hand, state space

in Bunch to find software structure is n
n
 which has a

considerable negative influence on finding an optimum

structure for software system. To calculate the quality of

clusters, Bunch uses BasicMQ and TurboMQ by which

there would be no difference between Aggregation, Class-

method and method-methods, while their influences on

software structure are different. Bunch can achieve a good

structure using Precision/Recall criterion. This criterion is

sensitive to the number of clusters and in some cases it

may lead to less accurate results.

Fig. 8 Some structures of a system

REFERENCES

[1] Z. Qifeng, Q. Dehong, T. Qubo, S. Lei, Object-Oriented Software

Architecture Recovery Using a New Hybrid Clustering Algorithm.
2010 Seventh International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD 2010), Pages 2546-2550.

[2] S. Ducasse S, and D. Pollet, Software Architecture Reconstruction:
A Process - Oriented Taxonomy. IEEE Transactions on Software

Engineering, Vol. 35, No. 4, 2009, Pages 573-591.

[3] S. Mancoridis, B.S. Mitchell, Y. Chen, E.R. Gansner, Bunch: A
Clustering Tool for the Recovery and Maintenance of Software

System Structures, ICSM '99 Proceedings of the IEEE International

Conference on Software Maintenance, 1999.
[4] B.S. Mitchell, A Heuristic Search Approach to Solving the

Software Clustering Problem. Ph.D Thesis, Drexel University,

Philadelphia, 2002.
[5] R.S. Pressman, Software Engineering: A Practitioner’s Approach.

7th ed. McGraw-Hill, Inc, 2010.

[6] I. Chowdhury, and M. Zulkernine, Using Complexity, Coupling,
and Cohesion Metrics as Early Indicators of Vulnerabilities. Journal

of Systems Architecture 57, Pages 294-313, 2011.

