Different Coupling of Notch Loaded Rectangular Microstrip Patch Antenna for Wireless Communication System

Mohit Khanna¹, D.C. Dhubkarya²

P.G. Student, Department of Electronics and Communication Engineering, B.I.E.T., Jhansi, U.P., India¹
Associate Professor, Department of Electronics and Communication Engineering, B.I.E.T., Jhansi, U.P., India²

Abstract: In this paper comparison of different shapes of coupling of microstrip patch antenna is discussed. The bandwidth of proposed design antenna is 37.43 % (2.705 GHz-1.852 GHz). The antenna has been designed for 2.45GHz operating frequency and the result of different coupling is compared by IE3D simulation tool. The return loss is -15.698 dB, gain of 3.7447 dBi and Directivity of 6.8002 dBi. The resonant frequency is 2.5470 GHz which is near to our operating frequency. The antenna is fed by 50Ω microstrip line feed.

Keywords: Microstrip patch antenna, coupling, Rectangular patch, IE3D Simulation Tool.

I. INTRODUCTION

Antennas are used to transmit or receive electromagnetic waves. It is used to convert free space wave to guided wave and vice versa. During recent years, Microstrip antenna is useful in wireless communication system [1-3]. The reason for this success is its uses which are its low cost, light weight, low profile and advantage in fabrication. The use of Microstrip antenna has been increased by the wireless revolution in the transfer of information.

To design the microstrip antenna we have to determine resonant frequency accurately because Microstrip antenna has narrow bandwidth and it can operate near resonant frequency.

In this paper the proposed antenna is designed using rectangular patch [5-7] and to increase the bandwidth the coupling is used and to match the operating frequency with resonant frequency we have done different coupling [9-10] and applied microstrip line feed [11-12]. This antenna is used for resonance at 2.5470 GHz. The material used in design is Glass epoxy of dielectric constant 4.4 and loss tangent of 0.0013. Results such as radiation pattern, gain and directivity are presented.

II. MATHEMATICAL FORMULAS TO CALCULATE THE DESIGN DIMENSIONS OF MICROSTRIP PATCH ANTENNA

The formula [4] which is used to calculate the dimensions of ground plane and microstrip patch in terms of length and width. The formula for calculating the width of Patch antenna is given as:

\[W = \left(\frac{c}{2 f_r} \left(\frac{\varepsilon_r + 1}{2} \right) \right)^{1/2} \]

Where: \(c = 3 \times 10^8 \text{ m/s}, \quad \varepsilon_r = 4.4, \quad f_r = 2.45 \text{ GHz} \)

Formula for effective dielectric constant is given as:

\[\varepsilon_{eff} = \left(\frac{\varepsilon_r + 1}{2} \right) + \left(\frac{\varepsilon_r - 1}{2} \right) \left(1 + \frac{12h}{W} \right)^{-1/2} \]

Where: \(h = 1.6 \text{ mm} \)

Formula of extension in length is given as:
Dimensional calculation of parameters such as resonant frequency (f_r), dielectric constant (ε_r), substrate thickness (h) and loss tangent ($\tan \delta$) and 50Ω Microstrip line feed is used. The parameters of antenna are given in table 1.

Table 1: Antenna Design Specification

<table>
<thead>
<tr>
<th>S. NO</th>
<th>Antenna Parameter</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Resonant frequency (f_r)</td>
<td>2.45 GHz</td>
</tr>
<tr>
<td>2.</td>
<td>Substrate thickness (h)</td>
<td>1.6 mm</td>
</tr>
<tr>
<td>3.</td>
<td>Dielectric constant (ε_r)</td>
<td>4.4</td>
</tr>
<tr>
<td>4.</td>
<td>Loss Tangent ($\tan \delta$)</td>
<td>0.0013</td>
</tr>
</tbody>
</table>

III. ANTENNA DESIGN PROCEDURE

The parameters of ground plane are Width is 38mm and Length is 47mm. The parameters of patch are Length is 28mm and Width is 37mm. Different couplings having the same structure and rectangular patch have a ring slot with inner radius R_1 of 9 mm and outer radius R_2 of 11 mm. Then notching is done in patch and different couplings are used to enhance bandwidth and match the resonant peak to that of design frequency. The design of calculated notch loaded coupled rectangular microstrip patch antenna with 50 Ω microstrip line feed inserted at mid of length of the patch antenna is shown in Fig.1.

IV. COMPARATIVE ANALYSIS

Dimension of all couplings are different from each other so that analysis of their characteristics are comparable. Results of all the parameters such as Bandwidth, Gain and Directivity are listed in table 2. S11 of the different coupling of the microstrip patch antenna is shown in Fig.2.

From Fig.2, it is observed that the bandwidth of proposed antenna 853.7MHz (37.43 % fractional bandwidth) between 1.8537 GHz to 2.7074 GHz band and Return loss of -15.169 dB at resonance frequency 2.547GHz has been obtained. It is also observed that operating resonance frequency 2.547 GHz shows close value with designed resonance frequency 2.45GHz. The graph of Gain vs. Frequency of proposed antenna is shown in Fig.3.
Fig. 2: Comparison of S11 of the different couplings of microstrip patch antenna.

Fig. 3: Comparison of Gain vs. Frequency graph of different couplings of microstrip patch antenna.

The graph of Directivity vs. Frequency of the proposed antenna is shown in Fig. 4.

Fig. 4: Comparison of Directivity vs. Frequency graph of microstrip patch antenna.
The graph of radiation pattern of optimized antenna is shown in Fig. 5.

![Graph of Radiation Pattern](image)

The radiation pattern of the proposed antenna has omnidirectional radiation pattern as shown above.

Table 2: Comparative data of different shapes of microstrip patch antenna

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Patch Shape</th>
<th>Lower Frequency (GHz)</th>
<th>Higher Frequency (GHz)</th>
<th>Resonant Frequency (GHz)</th>
<th>Bandwidth (%)</th>
<th>Gain (dBi)</th>
<th>Directivity (dBi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First coupling</td>
<td>2.3466</td>
<td>2.7114</td>
<td>2.5711</td>
<td>14.4246</td>
<td>3.7374</td>
<td>6.8100</td>
</tr>
<tr>
<td>2</td>
<td>Second coupling</td>
<td>1.8376</td>
<td>2.7034</td>
<td>2.5551</td>
<td>38.1325</td>
<td>3.7301</td>
<td>6.8078</td>
</tr>
<tr>
<td>3</td>
<td>Third coupling</td>
<td>1.8577</td>
<td>2.7154</td>
<td>2.5591</td>
<td>37.5106</td>
<td>3.7609</td>
<td>6.8068</td>
</tr>
<tr>
<td>4</td>
<td>Fourth coupling</td>
<td>1.8537</td>
<td>2.7074</td>
<td>2.5470</td>
<td>37.4339</td>
<td>3.7447</td>
<td>6.8002</td>
</tr>
</tbody>
</table>

We have also simulated the practical design using analyser and thus we have seen that nature of simulated graph is same as that of experimental graph. Thus we are uploading the image of hardware and comparison of simulated and experimental graph.

![Simulated vs Experimental Graph](image)
V. CONCLUSION

From the analysis of four coupling of patch we have seen the optimized performance is obtained using fourth coupling. Thus by varying the parameters of coupling the overall simulation results of antenna is enhanced. The resonant frequency is also matched to left side which is approximate to our operating frequency. Thus the proposed antenna design can be used in wireless communication system.

REFERENCES

