
ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICITCSA 2017

Pioneer College of Arts and Science, Coimbatore

Vol. 6, Special Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 117

Quality Assurance for Business Needs using

Software Testing Concepts

R. Jaya Kumar
1
, A. Senthil Kumar

2

Assistant Professor, Department of Computer Science, Sankara College of Arts and Science, Coimbatore, Tamilnadu.
1,2

Abstract: Software testing is a process of verifying and validating that a software application or program 1. Meets the

business and technical requirements that guided its design and development, and 2. Works as expected. Software

testing also identifies important defects, flaws, or errors in the application code that must be fixed. During test planning

we decide what an important defect is by reviewing the requirements and design documents. An important defect is one

that from the customer’s perspective affects the usability or functionality of the application. Assuring quality is not a

responsibility of the testing team. The testing team cannot improve quality; they can only measure it, although it can be

argued that doing things like designing tests before coding begins will improve quality because the coders can then use

that information while thinking about their designs and during coding and debugging.

Keywords: Software, Quality.

I. INTRODUCTION

Software testing is not a one person job. It takes a team,

but the team may be larger or smaller depending on the

size and complexity of the application being tested. The

programmer who wrote the application should have a

reduced role in the testing if possible. The concern here is

that they’re already so intimately involved with the

product and “know” that it works that they may not be

able to take an unbiased look at the results of their labors.

A good developer does not necessarily make a good tester

and vice versa, but testers and developers do share at least

one major trait, they itch to get their hands on the

keyboard. As laudable as this may be, being in a hurry to

start can cause important design work to be glossed over

and so special, subtle situations might be missed that

would otherwise be identified in planning. Like code

reviews, test design reviews are a good sanity check and

well worth the time and effort.

II. THE V-MODEL OF SOFTWARE TESTING

Software testing is too important to leave to the end of the

project, and the V-Model of testing incorporates testing

into the entire software development life cycle. In a

diagram of the V-Model, the V proceeds down and then

up, from left to right depicting the basic sequence of

development and testing activities. The model highlights

the existence of different levels of testing and depicts the

way each relates to a different development phase

a) Like any model, the V-Model has detractors and

arguably has deficiencies and alternatives but it clearly

illustrates that testing can and should start at the very

beginning of the project.

b) The business requirements are also used to guide the

user acceptance testing. The model illustrates how each

subsequent phase should verify and validate work done in

the previous phase, and how work done during

development is used to guide the individual testing phases.

Fig 1.1 Model Of Sofware Testing

c) V-model means Verification and Validation model. Just

like the waterfall model, the V-Shaped life cycle is a

sequential path of execution of processes. Each phase must

be completed before the next phase begins. Testing of the

product is planned in parallel with a corresponding phase

of development. Requirements like BRS and SRS begin

the life cycle model just like the waterfall model. But, in

this model before development is started, a system

test plan is created. The test plan focuses on meeting the

functionality specified in the requirements gathering.

The high-level design (HLD) phase focuses on system

architecture and design. It provides overview of solution,

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-system-testing/
http://istqbexamcertification.com/what-is-system-testing/
http://istqbexamcertification.com/what-is-system-testing/

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICITCSA 2017

Pioneer College of Arts and Science, Coimbatore

Vol. 6, Special Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 118

platform, system, product and service/process. An

integration test plan is created in this phase as well in

order to test the pieces of the software systems ability to

work together.

The low-level design (LLD) phase is where the actual

software components are designed. It defines the actual

logic for each and every component of the system. Class

diagram with all the methods and relation between classes

comes under LLD. Component tests are created in this

phase as well. The implementation phase is, again, where

all coding takes place.

III. THE SYSTEMATIC APPROACH

System Testing tests all components and modules that are

new, changed, affected by a change, or needed to form the

complete application. The system test may require

involvement of other systems but this should be

minimized as much as possible to reduce the risk of

externally-induced problems. Testing the interaction with

other parts of the complete system comes in Integration

Testing. The emphasis in system testing is validating and

verifying the functional design specification and seeing

how all the modules work together. The first system test is

often a smoke test. This is an informal quick-and-dirty run

through of the application’s major functions without

bothering with details. The term comes from the hardware

testing practice of turning on a new piece of equipment for

the first time and considering it a success if it doesn’t start

smoking or burst into flame.

IV. TESTIMONY METRIC

In the software testing literature, people often talk about

white-box testing and black box testing. Black-box testing

treats the program under test as a “black box.” No

knowledge about the implementation is assumed. In white

box testing, the tester has access to the details of the

program under test and performs the testing according to

such details. Therefore, specification-based criteria and

interface-based criteria belong to black-box testing.

Program based criteria and combined specification and

program based criteria belong to white-box testing.

Another classification of test adequacy criteria is by the

underlying testing approach. There are three basic

approaches to software testing:

(1) Structural testing: specifies testing requirements in

terms of the coverage of a particular set of elements in the

structure of the program or the specification;

(2) Fault-based testing: focuses on detecting faults (i.e.,

defects) in the software. An adequacy criterion of this

approach is some measurement of the fault detecting

ability of test sets.

 (3) Error-based testing: requires test cases to check the

program on certain error-prone points according to our

knowledge about how programs typically depart from their

specifications. The source of information used in the

adequacy measurement and the underlying approach to

testing can be considered as two dimensions of the space

of software test adequacy criteria.

V. BOUNDARY VALUE TESTING

Consider some mapping (function) that has an int input

variable with the interval of values a ≤ x ≤ b, where the

boundary values for x are a and b. One basic boundary

value analysis approach is to select test values for an input

variable, such as x above, as follows: a, a + ǫ, nominal, b

− ǫ, and b, where “nominal” represents some “middle” or

typical value within x’s range, and ǫ denotes some small

deviation.. Generalizing the approach to deal with more

than one variable can be straightforward. Consider, as an

example, a mapping that involves two input variables with

the following ranges:

 a ≤ x ≤ b

 c ≤ y ≤ d.

A generalization of the boundary value analysis approach

to handling this example is easy if we assume that failures

are seldom the result of simultaneous faults in the input

variables.

VI. CONCLUSION

Software testing provides a means to reduce errors, cut

maintenance and overall software costs. Numerous

software development and testing methodologies, tools,

and techniques have emerged over the last few decades

promising to enhance software quality. While it can be

argued that there has been some improvement it is

apparent that many of the techniques and tools are isolated

to a specific lifecycle phase or functional area. One of the

major problems within software testing area is how to get

a suitable set of cases to test a software system. This set

should assure maximum effectiveness with the least

possible number of test cases. There are now numerous

testing techniques available for generating test cases

REFERENCES
[1] G. Bernet, L. Bouaziz, and P. LeGall, “A Theory of Probabilistic

Functional Testing,” Proceedings of the 1997 International

Conference on Software Engineering, 1997, pp. 216 –226
[2] B. Beizer, “Software Testing Techniques,” Second Edition, Van

Nostrand Reinhold Company Limited, 1990, ISBN 0-442-20672-0

[3] J.B. Good Enough and S. L. Gerhart, “Toward a Theory of Test
Data Selection,” IEEE Transactions on Software Engineering, June

1975, pp. 156-173

[4] E. Engström and P. Runeson. A qualitative survey of regression
testing practices. In Proceedings of the International Conference on

Product-Focused Software Process Improvement, pages 3–16, 2010.

[5] K. Adamopoulos, M. Harman, and R. M. Hierons. How to
overcome the equivalent mutant problem and achieve tailored

selective mutation using co-evolution. In GECCO (2), Volume

3103 of Lecture Notes In Computer Scienc, pages 1338–1349.
Springer, 2004

[6] D. Amalfitano, A. R. for Android mobile application testing. In
Proceedings of the IEEE International Conference on Software

Testing, Verification and Validation Workshops, pages 252–261, 2011.

[7] Fasolino, and P. Tramontana. A GUI crawling-based technique
[8] A. Arcuri and X. Yao. Coevolving programs and unit tests from

their specification. In In Proceedings of the IEEE/ACM

International Conference on Automated Software Engineering,
pages 397–400, 2007.

http://istqbexamcertification.com/what-is-integration-testing/

