
 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 472

IMPROVING SOFTWARE QUALITY

THROUGH THE DEVELOPMENT OF

CODE READABILITY

Dr.P.SIVAPRAKASAM
1
, V.SANGEETHA

2

Reader, Sri Vasavi College, Erode, Tamilnadu, India
1

Assistant Professor, Department of computer Science, Vysya College, Salem, Tamilnadu, India
2

ABSTRACT— In this paper we present the role of software readability on software development cost. We dispute that the

upfront cost of incorporating software readability pays off attractively at later stages in the life cycle, especially at the

maintenance phase which is where most of the life cycle cost of software is expended. We explore the concept of code

readability and investigate its relation to software quality. We build an automated readability measure and show that it can be

75 percent effective and better than a human, on average, at predicting readability judgments. We also measure the snippets

on over million lines of code, as well as longitudinally, over many releases of selected projects. At last, we discuss the

suggestions of this study on Programming language design and engineering practice.

 Keywords— snippets, Annotator, software engineering, code readability, software quality

I. INTRODUCTION

We define readability “as a human judgment of how easy a

text is to understand. The readability of a program is related to

its maintainability, and is thus a critical factor in over- all

software quality. Typically, maintenance will consume over

70% of the total lifecycle cost of a software product

[6]Aggarwal claims that source code readability and

documentation readability are both critical to the

maintainability of a project [10]. Our analysis of different

software development activities shows that software

readability has a global effect on Software development cost

and is independent of software size (i.e., KSLOC). We also

discover the concept of code readability and examine its

relation to software quality [1]. This is a new advance to

measuring the complexity of software systems [2]. Software

industry uses software metrics to measure the complexity of

software systems for software cost estimation, software

development control, software assurance, software testing,

and software maintenance [3], [7], [5]. We find out the

concept of code readability and study its relation to software

quality. With data collected from open source, we derive

associations between a simple set of local code features and

human notions of readability. We construct an automated

readability measure and show that it can be 80% effective, and

better than a human on average, at predicting readability

judgments. This model of software readability correlates

strongly with human annotators and also with external (widely

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 473

available) notions of software quality. To understanding the

usefulness of the objective model of software readability, we

have to consider the readability metrics in natural languages.

A number of readability measure and formulas were defined,

but only few succeeded to conform validation standards. Few

of the most popular readability formulas include: Flesch's

Reading Ease Score [12], Dale-Chall's Readability Formula

[13], SPACHE Readability Formula, FryGraph Readability

Formula, SMOG Grading, Cloze Procedure, Lively-Pressey's

Formula and Gunning's Fog Index (or FOG).

2. RELATED WORK

In the past decade, the open source model of software

development has gained tremendous visibility and validation

though popular projects like Linux, Apache, and MySQL.

This new model, based on the “many eyes” approach, has led

to fast evolving, easy to configure software that is being used

in production environments by countless commercial

enterprises .However, how exactly (if at all) do consumers of

open source measure the quality and security of any piece of

software to determine if it is a good fit for their stack? Few

would disagree that many eyes reviewing code is a very good

way to reduce the number of defects. However, no effective

yardstick has been available to measure how good the quality

really is. In this study, we propose a new technique and

framework to measure the quality of software. This technique

leverages technology that automatically analyzes 100% of the

paths through a given code base, thus allowing a consistent

examination of every possible outcome when running the

resulting software. Using this new approach to measuring

quality, we aim to give visibility into how various open source

projects compare to each other and suggest a new way to

make software better.

Software has transitioned from being considered as a liability

to that of a re-usable asset. This shift in understanding now

requires that software be written for maintainability (Troy,

1995). Of the software quality attributes defined by ISO-9126,

maintainability is recognized by many researchers as having

the largest effect on software quality (Troy, 1995). At the

1992 Software Engineering Productivity conference, a

Hewlett- Packard executive stated that 60 – 80% of their

research and development staff were involved with

maintaining 40 – 50 million SLOC (Troy, 1995). Glass (2002)

states that software maintenance consumes from 40 – 80% of

the total software cost, with a mean of 60%. Boehm and Basili

(2001) report a mean of 70%.Spinellis (2003) observes that

programmers are poor at choosing meaningful identifier

names because they find it difficult to concurrently manage

the expression of programming constructs along with the

managing of natural language description, say to invent

identifier names.Slaughter (2006) reports that 80% of software

quality programs fail within the first year and that these

failures are not because of poor measurement techniques but

due to cultural resistance on the part of the programmers and

their management. The techniques presented in(2011) this

paper should provide an excellent platform for conducting

future readability experiments, especially with respect to

unifying even a very large number of judgments into an

accurate model of readability.

3. BACKGROUND

In addition, readability factors may vary significantly based

on application domain. This research is needed to determine

the extent of this variability, and whether specialized models

would be useful. Another possibility for improvement would

be an extension of our notion of local code readability to

include broader features. While most of our features are

calculated as average or maximum value per line, it may be

useful to consider the size of compound statements, such as

the number of simple statements within an if block. For this

study, we intentionally avoided such features to help ensure

that we were capturing readability rather than complexity.

However, in practice, achieving this separation of concerns is

likely to be less compelling. Readability measurement tools

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 474

present their own challenges in terms of programmer access.

We suggest that such tools could be integrated into an IDE,

such as Eclipse, in the same way that natural language

readability metrics are incorporated into word processors.

Finally, in line with conventional readability metrics, it would

be worthwhile to express our metric using a simple formula

over a small number of features. Using only the truly essential

and predictive features would allow the metric to be adapted

easily into many development processes. In addition, with a

smaller number of coefficients the readability metric could be

parameterized or modified in order to better describe

readability in certain environments, or to meet more specific

concerns.

3.1 READABILITY MODEL

We have shown that there is significant agreement between

our group of annotators on the relative readability of snippets.

However, the processes that underlie this correlation are

unclear. In this section, we explore the extent to which we can

mechanically predict human readability judgments.We

endeavor to determine which code features are predictive of

readability, and construct a model (i.e., an

automated software readability metric) to analyze other code.

3.2 MEASURING SOFTWARE QUALITY

Historically software quality metrics have been the

measurement of exactly their opposite—that is, the frequency

of software defects or bugs. The inference was, of course, that

quality in software was the absence of bugs. So, for example,

measures of error density per thousand lines of code

discovered per year or per release were used. Lower values of

these measures implied higher build or release quality. For

example, a density of two bugs per 1,000 lines of code (LOC)

discovered per year was considered pretty good, but this is a

very long way from today's Six Sigma goals. We will start this

article by reviewing some of the leading historical quality

models and metrics to establish the state of the art in software

metrics today and to develop a baseline on which we can build

a true set of upstream quality metrics for robust software

architecture. Perhaps at this point we should attempt to settle

on a definition of software architecture as well. Most of the

leading writers on this topic do not define their subject term,

assuming that the reader will construct an intuitive working

definition on the metaphor of computer architecture or even

its earlier archetype, building architecture.

3.3 SOFTWARE VERIFICATION & VALIDATION

• Planning Procedures and Tasks – Overview of various

methods for verification and validation, including static

analysis, structural analysis, mathematical proof, simulation,

and dynamic analysis.

• Reviews and Inspections – Overview of the various types of

reviews and inspections, including deskchecking and

inspections.

• Testing – Overview of the various types of test, including

structural integration, black box andregression.

3.4 SOFTWARE QUALITY MANAGEMENT

• Software Quality Goals and Objectives – A discussion of

how to describe, analyze and evaluate the quality goals and

objectives for programs, projects, and products.

• Software Quality Management (SQM) Systems

Documentation – An overview of the various SQM system

documents that a company should have in place and their

relationship to each other.

• Overview of Cost of Quality (COQ) – How to define,

differentiate, and analyze COQ categories (prevention,

appraisal, internal failure, external failure). Problem Reporting

and Corrective Action Procedures

4. METHODOLOGY

4.1 SELECT THE SNIPPET

In the generation of readability model, first collected the

snippets from different project open source software

repository. Snippet is small part of the code. A snippet does

include preceding or in-between lines that are not simple

statements, such as comments, function Headers, blank lines,

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 475

or headers of compound statements like if-else, try-catch,

while, switch, and for. These snippets must be too short to aid

feature discrimination. However, if snippets are too short, then

they may obscure important readability considerations.

Second, snippets should be logically coherent to allow

annotators the context to appreciate their readability. These

snippets are given to the annotators; these are the people who

can write the functionality of the code.

Table.1 snippets from different project

SNO PROJECTN

AME

NUMBER OF

LINES

1 2D GAMES 2623

2 BSPMAP 8442

3 GAME 1526

4 LIBRARY

RECORD

STYSTEM

836

5 PAYROLL 535

4.2 SCORING READABILITY

We can give ratings to the snippets in given order from 1 to 5.

If the code is “more readable” the metric value is 5, if less the

metric value is 1or 2, if in the average case the metric value is

3.

According to given instructions they are gave ratings for the

snippets from different project in the given order. First, forms

a set of features that can be detected statically from a snippet

or other block of code. For any code it contains some of local

code features those are to be Line length (#

character),identifiers, identifier length, Indentation (preceding

whitespace), Keywords, Parenthesis, Numbers, Comments,

Periods, branches, loops likewise nearly 18 features are there.

Each feature can be applied to an arbitrary sized block of Java

source code, and each represents either an average value per

line, or a maximum value for all lines.

Fig:1 Distribution of readability score on code snippets

taken from several open source projects

identifier length, Indentation (preceding whitespace),

Keywords, Parenthesis, Numbers, Comments, Periods,

branches, loops likewise nearly 18 features are there. Each

feature can be applied to an arbitrary sized block of Java

source code, and each represents either an average value per

line, or a maximum value for all lines. For example, we have a

feature that represents the average number of identifiers in

each line and another that represents the maximum number in

any one line. There are several machine learning algorithms

are available for this situation. Such algorithms typically take

the form of a classifier which operates on instances. For our

Purposes, an instance is a feature vector extracted from a

single snippet. In the training phase, we give a classifier a set

of instances along with a labeled “correct answer” based on

the readability data from our annotators. The labeled correct

answer is a binary judgment partitioning the snippets into

“more readable” and “less readable” based on the human

annotator data. We group the remaining snippets and consider

them to be “more readable.” Furthermore, the use of binary

classifications also allows us to take advantage of a wider

variety of learning algorithms [9]. After making the training

and testing phases we generated a readability model. Using

this readability the readability of the code is calculated. The

readability is to be comes between 0-1, means a fractional

value[10]. The readability model which is to be developed is

to be incorporated into the graphical user inter phase such as

to be NetBeans or Eclipse we can easily understand the

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 476

readability and we can also generate graphs to the readability

of the code which is to be taken to calculate the readability.

The graphical representation is to be for the better

understanding purpose. NetBeans and Eclipse are to be the

IDEs (Integrated Development Environment), and if we

incorporate this model into the IDEs, we can make more

friendliness to the users to use the readability model in nature.

Many organizations can be using this to check their code

readability. If code readability is less then automatically the

quality of the code also to be less. Readability and quality

both are to be interrelated in nature. If readability is less then

they try to increase the readability of the code by changing the

code. Then automatically quality of the code also increases.

Anyone can automatically judge readability about as well as

the “average” human can.

5. RESULT

Unlike other formulas, it is easy to calculate and is

regarded as more accurate readability index. Total number of

words, syllables and sentences are the basic counts of the

formula. Then it uses average sentence length and average

number of syllables per word to compute a final readability

score for a given text. The original Flesch Reading Ease

Formula is as below:

R:E: = 206.835 - (0.846 *wl) - (1.015 * sl)

Here:

R.E. = Reading Ease

wl = Word Length (The number of syllables in a 100 word

sample).

sl = Average Sentence Length (the number of words divided

by the number of sentences, in a 100 word sample).

Below is the modified form of the formula in case of text

having more than 100 words:

R:E: = 206.835 - (84.6 * ASW) - (1.015 *ASL)

Here:

ASW = Average Number of Syllables per Word (total number

of syllables divided by the total number of words).

ASL = Average Sentence Length (the number of words

divided by the number of sentences).

Constants in the formula are selected by Flesch after years of

observation and trial [14]. The R.E. value ranges from 0 to

100 and higher value implies easier the text is to read. Abram

and Dowling [14] use interpretations for FRES, originally

specified by Klare and Campbell.

The above mentioned is one example for the natural language

readability metrics. These metrics can help organizations gain

some confidence that their documents meet goals for

readability very cheaply, and have become ubiquitous for that

reason. We believe that similar metrics, targeted specifically

at source code and backed with empirical evidence for

effectiveness, can serve an analogous purpose in the software

domain. Most of the classical readability formulas, including

FRES, are based on the count of lexical tokens or entities, e.g.,

total number of words, unique words, sentences, syllables, and

paragraphs. In order to apply readability formulas to computer

programs, one has to find the equivalents of these lexical

entities for a program text. Programming languages at present

are not exactly same as natural languages are, however the

basic lexical units are similar. They have their own set of

characters equivalent to alphabets, keywords and user defined

identifiers equivalent to words, statements equivalent to

sentences, block structures equivalent to paragraphs or

sections, and modules equivalent to chapters.

6. CONCLUSION

The techniques presented in this paper should provide an

excellent platform for conducting readability formula,

especially with respect to unifying even a very large number

of judgments into an accurate model of readability. While we

have shown that there is significant agreement between our

annotators on the factors that contribute to code readability,

we would expect each annotator to have personal preferences

that lead to a somewhat different weighting of the relevant

factors. It also investigates whether a personalized or

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 477

organization-level model, adapted over time, would be

effective in characterizing code readability.

7. REFERENCE

[1] Buse, R. & Weimer, W. (2010), 'Learning a Metric for

Code Readability', transactions on Software Engineering 36

(4) , 546--558 . [2] C. M. Chung, and C. Yung, "Readability

Metrics," The Proceedings of Mid-America Chinese

Projkssional Annual Convention 2011,

Chicago, Illinois.

[3] C. M. Chung, W. R. Edwards, and M. G. Yang, "Static and

Dynamic Data Flow Metrics," Policy and Information, Vol. 13,

No. 1, pp. 91-103, June 2010.

[4] N. E. Fenton, "Software Metrics: Successes, Failures &

New Directions," presented at ASM 99: Applications of

Software Measurements a n joe , C A.

[5] C. M. Chung, and M. G. Yang, "A Software Meh7ics

Based Software Environment for Coding, Testing and

Maintenance," Proceedings of The 2010. Science, Engineering

and Technology Seminars, Houston, Texas, pp. T3-13 - T3 [6]

K. Aggarwal, Y. Singh, and J. K. Chhabra. Anintegrated

measure of software maintainability. Reliability and

Maintainability Symposium, 2009.Proceedings.Annual, pages

235{241, September 2009.

[7] C. M. Chung, and C. Yung, "Measuring Software

Complexity Considering Both Readability and Size,"

Infomration and Communication, Tamkang Univ., Taiwan.

[8] C. M. Chung, and C. Yung, "Readability Metrics," The

Proceedings of Mid-America Chinese Projkssional Annual

Convention Chicago, Illinois.

[9] S. D. Conte, H. E. Dunsmore, and Models,

Benjamin/Cummings Press

[10] K. Aggarwal, Y. Singh, and J. K. Chhabra, “An

integrated measure of software maintainability,” Reliability

and Maintainability Symposium, pp. 235–241, Sep. 2010.

[11] Ben Chelf Chief Technology Officer

Coverity,Inchttp://www.coverity.com/library/pdf/

open_source_quality_report.pdf.

[12] R. Flesch. A New ReadabiliJournal of Applied

Psychology

[13] E. Dale and J.S. Chall. A Form Readability. Educational

Resea 11{28, 1948.

[14]. M.J.Abram and W.D. Dowlin are Parenting Books?

Family 365{368, 1979.

Biography

Dr.P.Svaprakasam did his Mphil computer science during

the year of 1995 and completed his Ph.D in the year of 2005.

He has been specialized in this area of Netwoking, Web

designing, and Software engineering. He has attended many

conferences and presented several papers to his credit. He has

twenty two years experience in the field of computer science.

V.Sangeetha has completed her Msc(cs) during the year of

2001 and Mphil during the year 2004 from periyar

university .Her research interest include software engineering,

Data mining, Compiler design. She has eleven years

experience in the field of computer science.

http://www.coverity.com/library/pdf/

