
 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

Copyright to IJARCCE www.ijarcce.com 478

Frame Based Prediction for Games in Mobile

Devices Using Dynamic Voltage Scaling

1
A.Sanjeevi Kumar,

2
Dr.A.Rajalingam and

3
B.Kokila

1
Research Scholar CMJ University, Shillong, India.

2
Associate Professor, Saveetha Engineering College, Chennai, India.

3
Assistant Professor, Velammal Engineering College, Chennai, India.

ABSTRACT: Mobile devices have major problems with battery life. Dynamic voltage scaling technique is used to solve this problem

with low power utilization .Most of the video games are implemented by higher video decoding .In this paper we are implementing

frame based prediction algorithm for mobile devices games with different methods of DVS .The workload of application is divided

and predicted by past history and every frames are executed with processor without affecting the quality of decoding and power

consumption is also achieved.

Keywords: Low power VLSI, Dynamic Voltage Scaling, Computer Games, Workload Characterization, Power-aware Design,

 Prediction Algorithm.

I. INTRODUCTION

Computer games have recently experienced a sharp

increase in popularity and have attracted considerable

attention in both the industry and the academia. They are

driving a number of innovations in areas ranging from

graphics hardware and high performance computer

architecture to networking and software engineering.

Although most of the graphics-rich games are still largely

played on high-performance desktops, over the last couple

of years a number of games are also available on portable

devices such as PDAs. Since such devices are becoming

increasingly popular and powerful, this trend will certainly

continue. Energy efficiency is one of the most critical issues

in the design of such battery-powered portable devices. The

availability of dynamic voltage scalable processors has lead

to power management schemes for portable devices that are

based on dynamic voltage scaling (DVS) algorithms. Since

the power consumed by a processor depends linearly on its

frequency and on the square of its operating voltage, DVS

algorithms scale the operating frequency and voltage of the

processor to match a varying computational workload as

closely as possible. The showcase application for DVS

algorithms so far has largely been video decoding

[2],[4],[5],[6],[7] primarily because of two reasons: (i) video

decoding applications are computationally expensive, and (ii)

their workload exhibits high variability. These reasons make

video decoding applications ideal candidates to illustrate the

potential energy savings that may be achieved by DVS

algorithms. A number of innovative DVS schemes have

indeed been motivated by video decoding applications.

II. PROBLEM STATEMENT

A game engine runs in an infinite loop, where the

body of this loop consists of tasks responsible for processing

a single frame. This loop body is shown in Figure 1.

Figure 1: Frame processing in a game application.

Here Event denotes the user inputs or interactions with the

game, which along with the current state of the game is used

to generate the next frame to be displayed. This involves two

sequential step computing and rendering which we describe

below. A more detailed discussion may be found in [1]. The

computing step comprises tasks such as collision detection,

AI, simulation of game physics and particle systems.

Collision detection includes algorithms for checking

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

Copyright to IJARCCE www.ijarcce.com 479

collisions between the different objects and characters in the

game. Such algorithms compute intersections between two

given solids, their trajectories as they move, impact times

during a collision and their impact points. In some engines,

the AI tasks determine the movement of the characters in the

game. Game physics incorporates physical laws into the

game engine so that different effects (e.g. collisions) appear

more realistic to a player. Typically, simulation physics is

only a close approximation of real physics, and computation

is performed using discrete rather than continuous values.

Finally, a particle system model allows a variety of other

physical phenomenon to be simulated. These include smoke,

moving water, blood, explosions and gun fires. The number

of particles that may be simulated are typically restricted by

the computing power of the machine on which the game is

being played. The rendering step involves algorithms to

generate an image (or a frame) from a model, which is then

displayed as shown in Figure 1. In this case, the model is

typically a description of several three dimensional objects

using a predefined language or data structure. It consists of

geometry, viewpoint, texture and lighting information. In the

case of 3D graphics, rendering may be done offline, as in

pre-rendering, or in real time. Pre-rendering is a

computationally intensive process that is typically used for

movie creation, while real-time rendering is commonly done

in 3D computer games, which often rely on the use of a

specialized processor called a Graphics Processing Unit

(GPU). The rendering steps include the transformation of the

vertices of solid objects to the screen space, deletion of

invisible pixels by clipping, rasterization, deletion of

occluded pixels, and interpolation of various parameters.

The outcome of these steps is the transformation of the 3D

data onto the 2D screen. Rendering is computationally

expensive and occupies a significant fraction of the total

processing time of a frame.

III. USING DVS ALGORITHM

DVS clearly indicates that by using DVS, the

fluctuations in the frame rate can be reduced, thereby

resulting in an acceptable perceptual quality and at the same

time it reduces energy consumption. We construct the case

for such a DVS scheme. Towards this, we start by

presenting a framework for characterizing the workload of

game applications. We then discuss how such a framework

might be used to design DVS algorithms for games. Finally,

we outline how such DVS algorithms would differ from

those used for video decoding applications.

IV. DEAD BY DAWN GAME CHARACTERIZATION

OF WORKLOAD

Figure 2: Dead by dawn game Frames

A game engine is designed to sequentially execute

the computing and rendering tasks. For each frame, the

engine polls the user’s input and passes it over to the

computing subsystems responsible for collision detection,

AI, particle simulation etc. These subsystems compute new

locations and appearances of the visible objects based on the

user input. We refer to the resulting workload as the

computation workload. The results of these computations

are passed to the rendering task, which renders all the visible

objects in the current frame and displays them on the screen.

A significant component of this rendering task involves

rasterizing objects on the screen. From this point on, we will

primarily be concerned with this rasterization component of

the rendering task, for reasons which we explain later in this

section. Henceforth, we call the workload resulting from the

rasterization task as the rasterization workload. When Dean

By dawn uses its software renderer, all tasks including

geometry processing, rasterization and texture processing

are performed on the CPU. Before proceeding further, we

will need to understand what a game map (also referred to as

a level) is. The storyline of a game can be considered to

progress from one location (or level) to the next, where each

of these locations is represented using a game map.

Examples of game maps might be cities, buildings, rooms

and corridors. Intuitively, a game map may be considered to

be a data structure which stores all the objects and characters

in the scenario represented by the map. Frames of game are

shown in Figures 2. The game map Installation is used in

the default demo. A commonly used data structure to

represent a game map is a Binary Space Partition (BSP) tree

[10]. A BSP tree represents a recursive, hierarchical

partitioning or subdivision of space into convex subspaces.

The BSP tree is constructed by partitioning a space using a

hyperplane, with the resulting partitions being further

partitioned by recursively applying the same procedure. For

each leaf in the BSP tree, a set of leaves that are visible from

this leaf are calculated and updated as the game is played.

This set is referred to as the Potentially Visible Set (PVS). In

addition, the BSP tree also records information related to

texture and lighting. Both the computation and the rendering

steps shown in Figure 1 involve traversing and manipulating

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

Copyright to IJARCCE www.ijarcce.com 480

the BSP tree. A game map is divided into convex regions,

forming the leaves of the BSP tree. To render a game map,

first the BSP tree is traversed to determine the leaf in which

the camera is located Once this leaf is identified, the PVS

associated with this leaf lists the potentially visible leaves

from this camera location [7]. The bounding box of these

leaves is then used to quickly cull leaves from the PVS that

are not within the viewing frustum. The remaining leaves

are then passed to the subsequent rendering tasks, which

includes matrix transformations on the data and the

rasterizing of a frame as 2D image onto the screen.

V. WORKLOAD AS A FUNCTION OF SCENE

COMPLEXITY

The rasterization workload of a frame clearly has a

direct correspondence with the objects that are contained in

the frame. In other words, it depends on the “complexity” of

the scene to be rendered. The total workload involved in

processing a frame also has a correspondence with the

complexity of the frame. This correspondence can show how

the total workload changes with time. Further, our

measurements show that the rasterization workload

constitutes approximately 38% of the total workload

generated in processing a frame. From these two

observations, we believe that one can predict the total

processing workload to reasonable accuracy if one can

estimate the rasterization workload. The rest of this paper

shows how the rasterization workload can be predicted. We

propose a workload characterization in which the workload

associated with rasterizing a frame depends on the objects

constituting the frame.

Brush Model:

A brush model is a 3D convex solid composed of

polygons. Brush models are used to construct the geometry

of a game map and they define the “world space” in which

the player can move around. The workload resulting from

rasterizing a frame will depend on the number of brush

models in the frame and also the types of these models. We

therefore parameterize a brush model using the number of

polygons constituting it. To identify the workload involved

in rasterizing a brush model with a specified number of

polygons, we collected the number of polygons constituting

each brush model and the number of processor cycles

involved in rasterizing them.

Alias Model:

Alias models are used to represent the different

entities in Games (such as monsters, soldiers and weapons).

Usually an Alias model consists of the geometry and the

skin texture of the entity being modeled. The geometry in

turn is composed of triangles. Since the rasterization of the

triangles is done on the CPU instead of a graphics hardware,

the number of pixels constituting each triangle affects the

CPU workload. The software renderer renders the skin

texture of an Alias model with two rendering modes called

opaque and alpha blend. These modes call different

functions and therefore incur different rasterization

workloads For each mode, we characterize the rasterization

workload of an Alias model by the total number of pixels

rendered. This number can be obtained by summing up the

area of the triangles constituting an Alias model. Let x

denote the total number of pixels of an Alias model. Let t =

0 denote the case where Alias models with alpha blended

texture are being used, and t = 1 denote the case where

models with opaque texture are being used. To compute the

rasterization workload of Alias models with different values

of x and t, we capture all the models arising in different

frames along with their rasterization workloads.

Texture:

Texture is the 2D image applied to the face of a

brush model to give it the appearance of a real surface,

examples of which are concrete slabs, brick walls and metal

plates. A texture is typically composed of multiple surfaces.

We therefore characterize the rasterization workload of a

texture in terms of the number of surfaces constituting it. As

in the case of brush models, we capture the textures arising

from a sample game play and plot their rasterization

workload versus their number of surfaces. In this case we

found that the rasterization workload increases almost

linearly with the number of surfaces in a texture. Again, this

function remains consistent across different game maps.

Light Map:

Light maps are used to store pre-calculated lighting

information for different scenes in a game. Static light maps

in Games are low resolution bitmaps which are rendered as

multiple surfaces. Hence, the workload involved in

rasterizing light maps

is already included in the workload resulting from

rasterizing textures. Therefore it need not be accounted for

separately.

Particles:

Particles are often used to model small debris

resulting from gun shots hitting a target. They are usually

generated as a set of 3D points. The number of pixels of the

points generated in rasterization is used to parameterize the

rasterization workload of particles.

This workload scales almost linearly with the

number of pixels, as expected, and the scaling factor again

remains consistent across game maps. The contributions of

the abovementioned five types of objects to the rasterization

workload are summarized in Figure 3 (the workload

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

Copyright to IJARCCE www.ijarcce.com 481

resulting from light maps is not shows for reasons already

described).

Figure 3: Contributions of the different objects in a

frame towards the rasterization workload.

Rasterizing Alias models is clearly the most expensive.

Lastly, note that apart from these five objects, sprite models

are also responsible for a small fraction (almost negligible)

of the rasterization workload. These models are often used

to represent dust particles or special effects like sparkles.

VI. PREDICTING FRAME WORKLOAD FOR DVS

Most DVS algorithms targeted towards video

decoding applications rely on predicting the processing

workload of future frames or macroblocks and then

adjusting the processor’s operating voltage and frequency to

match this workload as closely as possible. Such predictions

are often based on the decoding times (or equivalently,

processor cycle requirements) of previously decoded frames.

We believe that DVS schemes for game applications would

require fundamentally different approaches. More

specifically, the workload prediction for a frame should not

rely on the processing times of previous frames. Instead, the

“structure” in the frame should be exploited to predict its

workload. The framework for workload characterization that

we presented in the previous subsection can be used towards

this. Using this framework, the rasterization workload of a

frame can be computed as the sum of the rasterization

workloads of its constituent objects.

The computed workload can then be appropriately

scaled to predict the total processing workload of the frame,

which can be used to adjust the processor’s voltage and

frequency. While computing, or rather predicting, the

rasterization workload of the different objects constituting a

frame, several data structures or tables need to be created, as

discussed in the previous subsection. An example of such a

table is the workload of each (single) Alias model for

different values of the parameters (x, t). Exactly how these

tables are created, and more importantly how they are

maintained or updated would depend on the specifics of the

DVS scheme.

Figure: 4 Prediction frames DVS Output

In contrast to such schemes, the only “structure”

information that DVS algorithms for video decoding

applications can use is whether the frame is of type I, B or P.

Figure 4 observation points to the potentially greater energy

savings that can be achieved in the case of game

applications. Finally, we would like to conclude by pointing

out that buffering technique to smooth out the variations in

the decoding times of frames, which are widely used in

video decoding applications, cannot be used for games due

to their interactive nature.

V. CONCLUSION

This paper was concerned with building a case for DVS

algorithms specifically targeted towards interactive graphics

games. Our main contribution was a framework for

characterizing the workload of game applications. We also

outlined how the proposed workload characterization

framework may be used to design concrete DVS algorithms

and how such algorithms might differ from those used for

video decoding applications. In this paper is to use the

proposed framework to predict the processor cycle

requirements of frames and use this prediction to scale the

processor’s voltage and frequency. However, more work

needs to be done to efficiently maintain the various tables

and compute/predict the frame workloads The workload of

application is divided and predicted by past history and

every frames are executed with processor without affecting

the quality of decoding and power consumption is also

achieved.

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

Copyright to IJARCCE www.ijarcce.com 482

 REFERENCES

[1] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M.

Shantz. Designing a PC game engine. IEEE Computer

Graphics and Applications, 18(1):46–53, 1998.

[2] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram,

Frame-based dynamic voltage and frequency scaling for a

MPEG decoder. In IEEE/ACM International Conference on

Computer-aided Design (ICCAD), pages 732–737, San Jose,

California, 2002.

[3] M. Claypool, K. Claypool, and F. Dama. The effects of

frame rate and resolution on users playing First Person

Shooter games. In Multimedia Computing and Networking

(MMCN) Conference, San Jose, California, 2006.

[4] C. J. Hughes and S. V. Adve. A formal approach to

frequent energy adaptations for multimedia applications. In

International Symposium on Computer Architecture (ISCA),

pages 138–149, Munich, Germany, 2004.

[5] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling

with buffers in low-power multimedia applications. ACM

Transactions in Embedded Computing Systems, 3(4):686–

705, 2004.

[6] Z. Lu, J. Lach, M. R. Stan, and K. Skadron. Reducing

multimedia decode power using feedback control. In

International Conference on Computer Design (ICCD),

pages 489–497, San Jose, California, 2003.

[7] Yan Gu Samarjit Chakraborty Wei Tsang Ooi ,”Games

are Up for DVFS” 2006

[8] http://www.lucidvisiongames.com

[9] Intel VTune Performance Analyzer

http://www.intel.com/cd/software/products/asmona/

eng/vtune/vpa/index.htm.

[10] A. Watt and F. Policarpo. 3D Games: Real-time

Rendering and Software Technology, Volume 1. Addison-

Wesley, 2001.

Biography

Mr. A. SANJEEVI KUMAR working

as Assistant Professor in department of

Electronics and Communication

Engineering Meenakshi Academy Of

Higher Education And Research, Chennai,

India. His current research activities

pertain to design VLSI Signal processing.

Dr.A.Rajalingam received the Bachelor

of Computer Science and Engineering

degree from Anna University, Chennai,

India. And he received Master of VLSI

Design Engineering degree from Anna

University, Chennai, India and he

completed his Doctoral degree from the

Bharath University Chennai, India. His

current research activities pertain to

design low power and high speed VLSI technologies.

Presently he is working as Associate Professor in

department of Electronics and Communication Engineering

at Saveetha Engineering, Chennai, India.

Mrs.B.Kokila working as Assistant Professor in department

of Computer science and Engineering,

Velammal Engineering College,

Chennai, India. Her current research

activities pertain to design processor

scheduling and Prediction algorithms.

http://www.ijarcce.com/
http://www.lucidvisiongames.com/

