
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

Copyright to IJARCCE www.ijarcce.com 1134

Query Processing In Distributed Database

Through Data Distribution

Abhijeet Raipurkar
1
, G.R. Bamnote

2

Final Year M.E. student, Dept. of CSE, PRMIT & R, Badnera (M.S), India
1

Professor & Head, Dept. of CSE, PRMIT&R, Badnera (M.S), India
2

ABSTRACT: Query processing in a distributed system requires the transmission of data between computers in a network. The

arrangement of data transmissions and local data processing is known as a distribution strategy for a query. Two cost measures,

response time and total time are used to judge the quality of a distribution strategy. Various algorithms are used that derive

distribution strategies which have minimal response time and minimal total time, for a special class of queries. The optimal

algorithms are used as a basis to develop a general query processing algorithm. The integration of a query processing subsystem into

a distributed database management system is used for analyzing query response time across fragmentations of global relations.

Distributed query processing is an important factor in the overall performance of a distributed database system. The database queries

access the applications on the distributed database sites thus the main problem incurred is the minimization of the total operating cost

i.e. communication cost and processing In order to optimize queries accurately, adequate information must be accessible to determine

which data access techniques are most effective e.g. table and column cardinality, organization information, and index availability.

Keywords: Fragmentation, optimize queries, table and column cardinality, index

 I.INTRODUCTION

 Distributed database plays an important role in today

era where information dependency is more and all sorts of

people need access to companies’ databases. In addition to a

company’s own employees, company’s customers, potential

customers, suppliers, and vendors wants to access the

information. It is possible for a company to have all of its

databases concentrated at one mainframe computer site with

worldwide access to this site provided by telecommunications,

networks, including the Internet. Although the management of

such a centralized system and its databases can be controlled in

a well-contained manner and this can be advantageous, it poses

some problems as well. For example, if the single site goes

down, then everyone is blocked from accessing the databases

until the site comes back up again. Also the communications

costs from the many far PCs and terminals to the central site

can be expensive. One solution to such problems, and an

alternative design to the centralized database concept, is known

as distributed database.

 The idea is that instead of having one, centralized

database, data is going to be spread among the cities on the

distributed network, each of which has its own computer and

data storage facilities. All of this distributed data is still

considered to be a single logical database. When a person or

process anywhere on the distributed network queries the

database, it is not necessary to know where on the network the

data being sought is located. The user just issues the query,

and the result is returned. This feature is known as location

transparency. This can become rather complex very

quickly, and it must be managed by sophisticated software

known as a distributed database management system or

distributed DBMS.

A database that consists of two or more data files

located at different sites on a computer network. Because

the database is distributed, different users can access it

without interfering with one another. Collections of data

(e.g. in a database) can be distributed across multiple

physical locations. A distributed database can reside on

network servers on the Internet, on corporate intranets or

extranets, or on other company networks. Replication and

distribution of databases improve database performance at

end-user worksites.

 To ensure that the distributive databases are up to

date and current, there are two processes: replication and

duplication. Replication involves using specialized

software that looks for changes in the distributive database.

Once the changes have been identified, the replication

process makes all the databases look the same. The

replication process can be very complex and time

consuming depending on the size and number of the

distributive databases. This process can also require a lot of

time and computer resources. Duplication on the other

hand is not as complicated. It basically identifies one

database as a master and then duplicates that database. The

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

Copyright to IJARCCE www.ijarcce.com 1135

duplication process is normally done at a set time after hours.

This is to ensure that each distributed location has the same

data. In the duplication process, changes to the master database

only are allowed. This is to ensure that local data will not be

overwritten. Both of the processes can keep the data current in

all distributive locations.

 II. BACKGROUND OF PRESENT SYSTEM

A distributed database system is the combination of

two different technologies used for data processing: Database

Systems and Computer Networks. The main component of a

database is the data which is basically collection of facts about

something. This something may be the business data in case of

a business corporation, strategic data in case of a military

database etc. Distributed database (DDB) is a collection of

multiple, logically interrelated databases distributed over a

computer network. Retrieval of data from different sites in a

DDB is known as distributed query processing. Distributed

processing performs computations on numerous CPUs to attain

a single result. [2] In query processing, the database users

generally specify what data is required rather than specifying

the procedure to retrieve the required data. Thus, an important

aspect of query processing is query optimization. Now in query

optimization, the optimizer of the database system finds a good

way to execute the queries. [3] Query processing is more

complex and difficult in distributed environment in comparison

to centralized environment as large number of parameters affect

the performance of distributed queries, relations may be

fragmented and/or replicated, and considering many sites to

access, query response time may become very high [2][1] The

distributed query optimization has several problems related to

the cost model, larger set of queries, optimization cost, and

optimization interval. The area of query optimization is very

large within the database field.[10] The goal of Distributed

Query Processing (DQP) is to execute such queries efficiently

in order to minimize the response time and the total

communication cost associated with a query. [2]. Therefore it

seems logical to look at potential benefits in relation to their

costs. There are three major activities [6] in the processing of

distributed database system, in the first phase the database is

fragmented, in second phase some complex mechanism is used

to allocate the database fragment to the different sites and in the

third phase the execution of task takes place. It is believed that

an effective database fragmentation improves the performance

of the database. No doubt fragmentation increases the

complexity of physical database design but it significantly

impact performance and manageability [7].

A query normally has many possible execution

strategies, and choosing a suitable one for processing a query is

known as query optimization. A query is expressed by using a

high-level language such as SQL (Structured Query Language)

in relational data model.[1] The main function of a relational

query processor is to transform a high-level query into an

equivalent lower-level query (relational algebra), and the

transformation must achieve both correctness and

efficiency. Execution strategy for the given query is

implemented by lower-level query. Since data is

geographically distributed in distributed relational database

system, the processing of a distributed query is composed

of the following three phases:

 local processing phase,

 reduction phase, and

 final processing phase

The local processing phase basically involves

local processing such as selections and projections.

The reduction phase uses a sequence of reducers

(i.e, semijoins and joins) to reduce the size of relations.

The final processing phase sends all resulting

relations to the assembly site where the final result of the

query is constructed.

A straightforward approach of processing a

distributed query would involve sending all relations

directly to the assembly site, where all joins are performed.

The allocation of the data influences the performance of the

distributed systems given by the processing time and

overall costs required for applications running in the

network [8]. In distributed query processing, partitioning a

relation into fragments, union of the fragments to form a

whole relation, and transferring a relation/fragment from

one database to another database are common operations.

The problem of finding the optimal partition

structure for a given set of privacy constraints and query

workload can be shown to be intractable. Heuristic search

techniques based on Greedy Hill Climbing to come up with

nearly optimal solutions.

 III. QUERY PROCESSING

DDBS adds to the conventional centralized DBS

some other types of processing expenses, because of the

additional design (hardware & software) to handle the

distribution. These expenses present as the cost of data

transfer over the network. Data transferred could be,

intermediate files resulting from local sites, or final results

need to be sent back to the original site that issued the

query. Therefore, database designers are concerned about

query optimization, which target minimizing the cost of

transferring data across the network.

Critera for measuring the cost of a query evalution

strategy for centralized DBMSs number of disk accesses (#

blocks read / written) and for distributed databases,

additionally the cost of data transmission over the network

and Potential gain in performance from having several sites

processing parts of the query in parallel.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

Copyright to IJARCCE www.ijarcce.com 1136

Join queries in distributed database are ship whole,

fetch as needed, semi joins and bloom joins and each of these

join strategies are having their own advantages and

disadvantages. Main considerations of query processing in

distributed databases are:

 Communication cost

 If there is several copies of a relation, decide which

copy to use

 Amount of data being shipped

 Relative processing speed at each site

 Site selection

A. Objectives of Query Processing

In the centralized database system, there are many

ways for executing the queries. Its expected cost is mainly the

CPU cost and I/O price. It aims at making queries cost lowest.

In the distributed database system, the query optimization

includes two parts: the query strategy optimization and local

processing optimization. And the query strategy optimization is

more important between them. There will be several strategies

in the same query due to that the data are stored in different

sites. The system resource and response time while each

strategy costs is also different. So the expected cost should

include corresponding communication cost besides

CPU cost and I/O price. Namely the expected cost is the sum of

CPU cost, I/O price and communication cost. The formula of

communication costs can be estimated roughly as follows:

TC(x)=C0+x *C1

Here,

 X stands for data transmission amount, usually its unit

is b (bit) for computing.

C0 is short for the time which is going to take on the

initial communication between two sites, which is determined

by the communication system and almost a constant, its unit is s

(second).

C1 is for the transmission cost of the unit cost (the

reciprocal of data transmission speed), namely the unit data

transfer times, and its unit is s/b.

An objective of DDBMS is to process distributed

queries efficiently and also providing availability and

reliability. [1] In a distributed execution environment, we

consider two time consumption estimates namely: total time or

response time. [5]

The Total cost is the sum of the time consumed by each

processor, regardless of concurrency.

Local processing time: (CPU + I/O) time

Communication time: fixed time to initiate a message + time to

transmit the data

The response time is the elapsed time between the initiation and

the completion of a query.

Distributed query processing is to translate a high-

level query on a single logical distributed database (as seen by

the users) into a low-level language on physically

distributed local databases. In distributed query processing,

the total cost should be minimized for executing a

distributed query. [5] The query execution involves only a

local processing cost when no relation is fragmented in a

distributed DBMS. On the other hand, if relations are

fragmented, a communication cost is incurred in addition

with the local processing cost. The aim of distributed query

processing is to minimize the total execution cost of the

query which includes the total processing cost (sum of all

local processing costs in participating sites) of the query

and the communication cost. The local processing cost of a

distributed query is evaluated in terms of the number of

disk accesses (I/O cost) and CPU cost. The CPU cost is

incurred when performing data operations in the main

memory in participating sites. The I/O cost can be

minimized by using efficient buffer management

technique. In a distributed query execution, the

communication cost is required to exchange data between

participating sites. Hence, the communication cost depends

on several factors such as the amount of data transfer

between participating sites, the selection of best site for

query execution, the number of message transfer between

participating sites, and the communication network. In case

of high-speed wide area networks (with a bandwidth few

kilobytes per second), the communication cost is the

dominant factor and the optimization of CPU cost and I/O

cost can be ignored in such cases. The optimization of local

processing cost is of greater significance in case of local

area networks.[1][2]

 IV.QUERY OPTIMIZATION

B. Semi Join Based Query Optimization

If the data with complete relationship were transmitted in

the network, it must bring redundancy. When one

relationships transmitted to other sites, not all the data

participate in the join-operation or could be used. So, the

data which don’t participate in the join-operation or useless

will not be in the network transmission. The basic principle

of query optimization strategy based on semi-join operation

just reduces the data quantity in relationship operation and

the data transmission among sites.

 The definition of semi-join operation is “Semi-join is the

algebraic relationship operation derived from

theconnection and projection operation.”

If there were two relationships named R and S on

the site 1 and site 2 respectively, and property A and B are

the two properties respectively on them. So the semi-join in

public property R.A = S.B can be expressed as:

R ∞A=B S = Π (R ∞A=B S) --------------------(1)

Formula (1) can be expressed as:

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

Copyright to IJARCCE www.ijarcce.com 1137

R ∞A=B S=R ∞A=B (Π B(S)) ----------------------------(2)

and The semi-join operation is not symmetry, namely

 R ∞ S ≠ S ∞ R. ---(3)

The full connection operation can be expressed by the semi-join

operation as the intermediate steps. With the semi-join

operation, the full connection operation in public property R.A

= S.B can be expressed as:

R ∞ A=B S=(R ∞ A=B S)∞ A=B S =(R ∞A=B (ΠB(S)) ∞A=B

S…………….(4)

The connection process and cost estimates using the

semi-join optimization method and its cost estimates are as

follows :

1) With the public property B, ΠB(S) can be projected between

the relationship R and S on site 2.

2) Transmit the result of ΠB(S) from site 2 to site 1, the cost is:

 C0+ C1*size(B)*

val(B[S])----------------------(5)

 size(B) stands for the length of property B, and val(B[S])

stands for the quantity of different values within property B in

the relationship B.

3) Calculate the semi-join on site 1 and then set the results for

R', then R'= R ∞ A=B S .

4) Transmit R' to site 2 from site 1, the cost is:

C0+C1*size(R)*card(R ') ----------------(6)

card(R ') stands for the quantity of records in R’.

5) Do the connection operation on the site 2, then R'∞ A=B S .

The total cost using the semi-join method for the query

optimization is:

Csj=2C0C1(size(B)* val(B[S])size(R)*card(R'))----(7)

If we transmit the relationship R from site 1, then executive the

connection operation with S on the site 2, the total cost is:

Cnj=C0C1*size(R)*card(R) ---------------------------- (8)

In the process of query optimization, there may be several

methods using the semi-join algorithm to optimize the

connection query. Then best method should be selected after

calculating the cost of each available semi-join scheme. Next,

lowest site cost can be selected and calculate the full

connection’s cost. Finally determine the optimal method after

comparing the two schemes.

C. SDD-1 Algorithm

In the SDD-1 algorithm, it uses the semi-join

algorithm to handle the connection among the relationship and

cut them. When all of the relationship is the maximum contract,

then transfer it to a site where the query can be executed. The

query operation is not always ended on this site [6].

SDD-1 algorithm has three important characteristics as

follows:

1) It uses the semi-join operation to handle strategy.2)

The relationship of the whole sites is not repetitive and

fragmented.3) During price estimation of the whole algorithm,

the transmission cost to the starting site is not calculated.

SDD-1 algorithm consists of two parts:

 the basic algorithm and

 the post-optimality.

 The basic algorithm evaluates the factors of

execution strategy such as cost and profit according the

reduced price formula. Then the program set cut by semi-

join operation will be given. Finally, the most beneficial

execution strategy will be decided. But the efficiency of

this strategy may not be optimal.

Post-optimality is the process of amending the

implementation of basic algorithm to get more rational

operation.

A query graph is given. The basic algorithm is

described as follows:

1) Evaluate the income of all semi-join programs in the

query graph.

2) Choose the semi-join with maximum income, execute it

and recount the income of all the semi-join.

3) Execute step 2 circularly until all of the semi-join value

of whose income is greater than 0 has been executed.

4) Select the site with minimum communication cost as the

last executing site. Transmit all the relationship to the site

and connect them to get the ultimate result.

The post-optimality can update the algorithm in

two ways:

1) If the site where the last semi-join operation cut the

relationship is the last executing location, the last semi-join

operation can be canceled.

2) Correct the semi-join flow chart from the circulation of

the basic algorithm. The cost of the original semi-join

operation may be high, but the income evaluation is very

large. If there is this kind of situation, the semi-join

operation can be executed after the relationship is cut short.

Then, the order of semi-join operation can be corrected.

Although the SDD-1 algorithm can cut short the

relationship effectively and reduce the communication cost,

there are some disadvantages, such as the complexity of the

algorithm. When the number of records is very large, the

cost on query and search will increase rapidly. Moreover,

the SDD-1 algorithm doesn’t make full use of the

distributivity of distributed database system. All of the

semi-join operations are executed in order and it will

increase the response time of query to a certain extent.

D. Partitioning Algorithm

Hill-climbing is a heuristic in which one searches

for an optimum combination of a set of variables by

varying each variable one at a time as long as the objective

value increases. The algorithm terminates when no local

step decreases the cost. The algorithm converges to local

minima. An initial fragmentation of the database is

considered which satisfies all the privacy constraints.

Initial Guess

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

Copyright to IJARCCE www.ijarcce.com 1138

The initial state is obtained using the weighted set

cover. Refer [15] for details of the algorithm. Algorithm for

Weighted Set Cover: - Assign a weight to each attribute based

on the number of privacy constraints it occurs in. - Encrypt

attributes one at a time starting with the one which has the

highest weight till all the privacy constraints are satisfied.

Hill Climbing Step:

 Then, all single step operations are tried out

(1) Decrypting an encrypted column and placing it at Server 1.

 (2) Decrypting an encrypted column and placing it at Server 2.

(3) Decrypting an encrypted column and placing it at both

servers

 (4) Encrypting an decrypted column and placing it at both

servers.

From these steps, the one which satisfies privacy

constraints and results in minimum network traffic is

considered as the new fragmentation and the process repeats.

The iterations are performed as long as we get decomposition at

each step which improves over the existing decomposition

using the cost metric discussed before.

 V. ANALYSIS OF EXISTING SYSTEMS

Joins and semi joins are primitive operations used to

extract required information from one, two or multiple tables.

Focus is given on computing and analyzing the performance of

joins and semi joins in distributed database system. The various

metrics that will be considered while analyzing performance of

join and semi join in distributed database system are Query

Cost, Memory used, CPU Cost, Input Output Cost, Sort

Operations, Data Transmission, Total Time and Response

Time.

Join is one of the most imperative operations in

database theory that is used to extract information from two or

more than two tables. Technically join operation is one of the

special cases of Cartesian product. In join unlike Cartesian

product before concatenation the tuples of the join tables are

checked against specified condition. There are various types of

joins like equi-join, self join, inner join, outer join etc.

Independent of type all of these are used to extract data from

two or more tables. The center of attraction in this study will be

equi-join one of the most frequently used type of join.

A semi-join is one of the important operations in

relation theory that is used to optimize a joins query. Semi join

[3] is used to reduce the size of relation that is used as an

operand. A semi-join from Ri to Rj on attribute A can be

denoted as Rj ∞ Ri . Research shows that semi joins are very

helpful in optimizing the join query by reducing the quantity of

data exchanged. But one of the darken side of using semi join is

that it increases the local processing cost as well as number of

message. It returns rows that match an EXISTS sub-query

without duplicating rows from the left side of the predicate

when several rows on the right side satisfy the norms of the

sub-query. The research has shown that Semi-join and anti-

join transformation cannot be done if the sub-query is on an

OR branch of the WHERE clause.

The objective of semi join in distributed database

is to reduce the data transmission [2] from one site to

another.

Since reduced cost and advanced communication

technology gives birth to the idea of Distributed Database

Management Systems that turn out to be an integral part of

many computer applications. Distributed Database [7]

system is cluster of distributed computers that are coupled

with one another with the help of some communication

media (like twisted pair, coaxial cable, fiber optics, satellite

etc.) on which a database is allocated and placed. It is

obvious that a query may have different equivalent

transformation that lead to different resource consumption.

So in distributed database system one has to keep in mind

the consumption of resources while selecting the execution

strategy for the query. So while execution distributed

query one has to keep in mind various factors like

equivalent relational algebra’s operations, placement of

data and application programs, ordering of relation

algebra’s operations, bytes transferred from one site to

another, Total_Time, Response_Time etc. Now let us

understand the meaning and significance of Total Time and

Response Time. In the distributed cost model [7] [5] total

time which is computed by adding all the cost components

(Local Processing Cost and Communication Cost) of a

query, whereas Response Time is computed as an elapsed

time from the starting to completion of query.

Mathematically the Total_Time and

Response_Time are computed as follow:

Total_Time = TCPU * # Instructions + TIO * IO +

+TMessage * #Messages +TTCost * #Bytes

Response Time

TCPU * # SInstructions + TIO *SIO + +TMessage * #

S_Messages +TTCost * #SBytes

In distributed database system the analysis shows

that join approach gives its best in data transmission when

a relation having lower cardinality is transmitted to the

location where a relation of upper cardinality and larger

tuple size is placed. In regard to total time it is clear from

above analysis that the query executed with semi join

possess lesser total time when data transfer is more. The

data transmission in a distributed query using semi join is

always lesser than the data transmitted in distributed query

using joins operation however data accessed using semi

join may be larger than join operation. Semi joins

implement more operation as compare to join, but it

reduces the number of bytes transferred from one site to

another to great extent. Semi joins are beneficial if the

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

Copyright to IJARCCE www.ijarcce.com 1139

transmission cost is of main consideration, otherwise joins will

be preferred.

 VI.FUTURE SCOPE

The query optimization is one of the most important research

directions in whether the centralized database or distributed

database. Because of the complex establish environment and

rich technology content of distributed database, there are still

aspects deserving further study. Query optimization technology

in the distributed database will be more and more perfect in

future. The proposed work can be used to handle fuzziness is in

the form of approximate values or linguistic variables, which

can be applied only in queries. Though the fuzziness can be

incorporated by storing the fuzzy value inside the database, it

may not be the efficient method in the real time. Fuzzy

databases are still not popular among the people because they

are reluctant to replace their crisp data by fuzzy data before

they are convinced. Various fuzzy database models, including

relational and object-oriented databases, have been proposed

over the past thirty years and tremendous gain is hereby

accomplished

 VII. CONCLUSION

 Today’s business environment has an increasing need

for distributed database and client/server applications as the

desire for reliable, scalable and accessible information is

steadily rising. Distributed database systems provide an

improvement on communication and data processing due to its

data distribution throughout different network sites. Not only is

data access faster, but a single-point of failure is less likely to

occur, and it provides local control of data for users. However,

there is some complexity when attempting to manage and

control distributed database systems. A distributed database

allows faster local queries and can reduce network traffic. With

these benefits comes the issue of maintaining data integrity.

Single big server could hardly handle requirement of high

availability, data warehousing and fast data storage

simultaneously. The distributed database satisfies them by

separating functions at low cost.

 Proposed work for query processing handles two

important issues in data distribution i.e. minimizing query

response time through partitions and handling fuzziness in

database ny translating fuzzy queries into SQL.

REFERENCES

[1] A.Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O

(plogn)approximation algorithms for min uncut, min 2cnf deletion, and directed

cut problems. In Proc. 37th Ann. ACM STOC, pages 573581, 2005.
[2]Yan T, IacobesnM, Garcia-Mo Lina H,et al, Introduction of Query

optimization of distributed database. Paris,FR: WAM Press, 1999.

[3]G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R.
Motwani,U. Srivastava, D. Thomas, and Y. Xu. Two can keep a secret: A

distributed architecture for secure database services. In Conference on
Innovative Data Systems Research,2005.

 [4] D.Chiang, L.R. Chow and N. Hsien, “Fuzzy information in extended

 fuzzy relational databases”, Fuzzy Sets and Systems 92, pp.1-
1(1997).

 [5] G.J. Klir and B. Yuan [2001], “Fuzzy Sets and FuzzyLogic: Theory

 and Applications”, Prentice Hall, Inc. Englewood Cliffs, N. J., U.S.A.
 [6] Nilarun Mukherjee, Synthesis of Non Replicated dynamic Fragment

 Allocation Algorithmin Distributed Database System”, Published in

 Proceeding of international conference on advances in Computer
 Science , 2010

 [7] Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database

 System”, Fifth Edition,Pearson Education, second Impression, pp 894,
 2009.

