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ABSTRACT: Cloud computing has become a new age technology in enterprises and markets. Clouds allow access to 

applications and associated data from anywhere. Companies are able to rent resources from cloud for storage and other 

computational purposes so that their infrastructure cost can be reduced significantly. Further they can make use of company-

wide access to applications, based on pay-as-you-go model. Hence there is no need for getting licenses for individual products. 

However one of the major pitfalls in cloud computing is related to optimizing the resources being allocated. Because of the 

uniqueness of the model, resource allocation is performed with the objective of minimizing the costs associated with it. The other 

challenges of resource allocation are meeting customer demands and application requirements. The performance limitations of 

existing economic allocation models are analysed by defining strategies to reduce the failure and reallocation rate, increase 

occupancy and thereby increase the obtainable utilization of the system. The high-performance resource utilization strategies 

presented can be used by market participants without requiring dramatic changes to the allocation protocol. The strategies 

considered include overbooking, advanced reservation, just-in-time bidding, and using substitute providers for service delivery. 

The proposed strategies have been implemented in a distributed meta scheduler and evaluated with respect to Grid and cloud 

deployments. 

 

Index Terms: Resource allocation, cloud computing, grid computing, cloud services. 

 

I. INTRODUCTION 

 

CLOUD computing helps consumers to 

outsource computation, storage and other tasks to third 

party cloud providers and pay only for the resources used. 

At present the models employed are simplistic like posted 

price but the system moves towards more sophisticated 

mechanisms, such as spot-pricing. In near future a global 

computation market could be realized by a high-

performance federated architecture that spans both Grid 

and cloud computing providers. This type of architecture 

necessitates the use of economic aware allocation 

mechanisms driven by the underlying allocation 

requirements of cloud providers.  

Computational economies have long been 

advertized as a means of allocating resources in both 

centralized and decentralized computing systems [1]. An 

advantage of such system is allocation efficiency, 

scalability, clear incentives, and well-understood 

mechanisms as advantages. The system also includes poor 

performance, high latency, and high overheads.  

Overheads in the sense, in competitive economy 

resources are typically “reserved” by m participants for 

the duration of a negotiation. In most cases, there are only 

n “winning” participants, therefore all other m _ n 

reservations are essentially wasted for the duration of that 

negotiation. Moreover, there is an opportunity cost to 

reserving resources during a negotiation, as they will not 

be available for other negotiations that begin during the 

interval of the first negotiation. This type of scenario is 

clearly evident in auction or tender markets, however it 

can also be seen in any negotiation in which parties are 

competing against one another for the goods on offer. In 

any case, this wasteful negotiation process is expensive in 

both time and cost and therefore reduces the overall 

utilization of the system.  

In this paper, these inefficiencies are addressed 

by two general principles: first, avoid commitment of 

resources, and second, avoid repeating negotiation and 

allocation processes. We have distilled these principles 

into five high-performance resource utilization strategies, 

namely: overbooking, advanced reservation, just-in-time 

(JIT) bidding, progressive contracts, and using substitute 

providers to compensate for encouraging 

oversubscription. These strategies can be employed either 

through allocation protocols and/or by participants, to 

increase resource occupancy and therefore optimize 

overall utilization. Each of the strategies is examined 

experimentally within the context of a market-based cloud 

or Grid using the DRIVE meta scheduler [2].  

 

II. RELATED WORK 
 

The earliest computational market enabled users 

to bid for compute time on a shared departmental 
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machine. DRIVE, the system used for the experimental 

work in this paper, is one example of such a federated 

meta scheduler and is designed around the idea of 

“infrastructure free” secure cooperative markets. Another 

prominent example is Inter Cloud [8] which features a 

generic market model to match requests with providers 

using different negotiation protocols. Another alternative 

approach is spot pricing.  

Overbooking has been previously used in 

computational domains as a way to increase utilization 

and profit [10], [11]. In [10] overbooking is used to some 

extent to compensate for “no shows” and poorly estimated 

task duration. In [11], backfilling is combined with 

overbooking to increase provider profit. 

 Globus Architecture for Reservation and 

Allocation (GARA) [12] was one of the first projects to 

define basic advanced reservation architecture to support 

QoS reservations over heterogeneous resources. Many 

other schedulers have been developed so reservation 

aware schedulers have been shown to improve system 

utilization due to the additional flexibility specified by 

some consumers, [15].  

Various papers have looked at last minute 

bidding and “sniping” [16], [17]. Typical motivation for 

last minute bidding is to combat “shill bidders” (fake 

bidders raising the price) and incremental bidding 

(bidding in increments rather than bidding ones true value 

or proxy bidding). JIT bidding for sealed bid auctions was 

first proposed in some earlier work [18] as a means of 

reducing the effect of auction latency in distributed 

auctions. 

 

III. OPPORTUNITIES AND HIGH UTILIZATION 

STRATEGIES 

In a traditional auction, providers auction 

resources by soliciting consumer’s bids, at the conclusion 

of the auction an agreement is established to provide 

resources for the winning price, when the agreement 

expires the resources are returned. Reverse auctions 

switch the roles of provider and consumer, therefore 

mapping more accurately to user requested resource 

allocation (e.g., in a cloud). The life cycle of a reverse 

auction in DRIVE is shown in Fig. 1. In a reverse auction 

a consumer “auctions” a task (or job), providers then bid 

for the right to provide the resources required to host the 

task. The following high-performance strategies are 

defined according to a reverse auction model, however 

they could also be applied in a traditional auction model.  
 

A. Preauction 

1. Overbooking: Overbooking has been shown to 

provide substantial utilization and profit advantages [10] 

due to “no shows” and overestimated task duration. While 

overbooking may seem risky it is a common technique 

used in yield management and can be seen in many 

commercial domains, most notably air travel [19], [20] 

and bandwidth reservation [21]. Overbooking policies are 

carefully created and are generally based on historical 

data. Due to the widespread adoption of overbooking 

techniques in commercial domains there is substantial 

economic theory underpinning appropriate strategy [22], 

[23]. 

 

 
 

Fig 1: Reverse auction life cycle in DRIVE 

 

B. During Auction 

1. Just-in-Time Bidding: During negotiation it is 

possible that resource state may change and therefore 

invalidate a provider’s valuation (or bid). In general, there 

are two ways to minimize the effect of latency: 

 Reducing the duration of the auction. The 

problem with this approach is that there is minimal time 

for providers to discover the auction and to compute their 

bids. 

 Bid as late as possible. The advantage with this 

approach is that providers can compute their bids with the 

most up to date resource state and resources are reserved 

for a shorter time. The primary problem with this 

approach is time sensitivity, the auction can be missed if 

the bid is too late or experiences unexpected network 

delays.  

2. Flexible Advanced Reservations: Advanced 

reservation support is commonly used in distributed 

systems to provide performance predictability, meet 

resource requirements, and provide quality of service 

(QoS) guarantees [12], [24]. As Grid and cloud systems 

evolve the task of planning job requirements is becoming 

Auction 
Request

Auction 
Request 

Agreement 
[phase 1]

Resource 
Confirmed 
Contract 
[phase 2]

Service 
Provisioning

Resouce 
Returned



 

ISSN (Print)    : 2319-5940 

ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 2, February 2013 
 

   Copyright to IJARCCE                                                                               www.ijarcce.com                                                              1232 
 

more complex, requiring fine grained coordination of 

interdependent jobs in order to achieve larger goals. Often 

tasks require particular resources to be available at certain 

times in order to run efficiently. Tasks may also require 

coordinated execution due to dependencies between one 

another. In addition to consumer advantages, providers 

also benefit by being given flexibility in terms of task 

execution and therefore they have the opportunity to use 

advanced scheduling techniques to optimize resource 

usage. This increase flexibility to substantial performance 

improvements for providers. 

 

C. Post auction 

1. Two Phase Contracts: Auction latency may restrict 

providers participating in future negotiations due to a lack 

of knowledge of the outcome of ongoing or previous 

negotiations. There are two general approaches  

1. Providers can reserve resources for the duration of 

the negotiation immediately, 

2. They can wait for the result of the allocation before 

reservation.  

Both the case is ideal—initial reservation leads to 

underutilization as a negotiation typically has one winner 

and multiple losers, while late reservation results in 

contract violations as resource state may change between 

negotiation and reservation. To minimize the effect of 

latency we propose a progressive two phase contract 

mechanism that reflects the various stages of negotiation.  

The two phase contract structure is shown in Fig. 

1. As the result of an allocation a tentative agreement is 

created between the user and winning provider(s) (phase 

1),  before redemption this agreement must be hardened 

into a binding agreement (or contract) that defines 

particular levels of service to be delivered along with a set 

of rewards and penalties for honoring or breaking the 

agreement (phase 2).  

2. Second Chance Substitute Providers: If a winning 

provider cannot meet their obligations at the conclusion of 

an auction (due to overbooking), it is a waste resources to 

reexecute the auction process when there is sufficient 

capacity available from nonwinning providers. In this 

case, the losing bidders can be given a second chance to 

win the auction, by recomputing the auction without the 

defaulting bidder. This technique can reduce the 

allocation failures generated from overbooking and 

therefore increase utilization of the system. One negative 

aspect of this approach is the potential for increased 

consumer cost, as the substitute price (SP) is, by 

definition, greater than the previous winning price.  

 

IV. DRIVE 
 

Distributed Resource Infrastructure for a Virtual 

Economy (DRIVE) [2], [25] is a distributed economic 

metascheduler designed to allocate workload in 

distributed and federated computing environments. 

Allocation in DRIVE is abstracted through an economic 

market which allows any economic protocol to be used. 

This architecture minimizes the need for dedicated 

infrastructure and distributes management functionality 

across participants. The co-op architecture is possible due 

to the deployment of secure economic protocols which 

provide security guarantees in untrusted environments 

[26]. 

In DRIVE, each resource provider is represented 

by a DRIVE Agent that implements standard functionality 

including; reservations, policies, valuation, and plug-ins 

for the chosen economic protocol (e.g., bidding). DRIVE 

Agents use policies and pricing functions to price goods. 

The DRIVE marketplace includes a number of 

independent services and mechanisms that provide 

common functionality including resource discovery, 

allocation, security, VO management, and contract 

(agreement) management. DRIVE is designed to support 

flexible deployment scenarios, it is therefore independent 

from a particular type of task (e.g., service request, cloud 

VM or Grid job) in each phase of the task life cycle 

(submission, allocation, and execution).  

 

V. EXPERIMENTAL ECONOMY 

The pricing functions used are primarily based upon 

local information known by the provider and aim to 

incorporate the perceived risk of a transaction. For 

example, the price may be increased if a provider has little 

spare capacity. 

 

A. Pricing Functions 

All bid prices are determined based on a 

combination of current conditions, projected conditions or 

previous bidder experience. In the following equations, 

Punit is the price per job unit and b denotes a bid in the 

specified range   Bb ,0 . Job units (JU) are defined as 

the product of CPU utilization and duration (Junits = 

Jutilization _ Jduration). The Random and Constant pricing 

functions are baseline functions. 

 

Random: the unit price is determined 

irrespective ofany other factors 

 

),0( BRandomPunit   

 

Constant: the unit price is the same for every 

request 
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),0(, BccPunit   

 

Available capacity: the unit price is calculated 

based on projected provider capacity at the time when the 

job would execute. Uprovider is the projected utilization of 

the provider, Ujob is the utilization of the requested job, 

and Cprovider is the total capacity of the provider 

 

B
C

UU
P

provider

jobprovider

unit 


  

 

Win/loss ratio: the unit price is based on the 

previous win/loss ratio seen by the individual provider. R 

is the specified ratio, W is the number of wins since time 

t0, and L is the number of losses since time t0 

2
)(

B

R

B
LRWPunit   

Time based: the unit price is based on the time since the 

provider last won an auction. The unit price decrements 

every Tperiod seconds, Tlast win is the time since the last 

allocation. Tlast win is set to 0 at time t0 
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B. Penalty Functions 

The penalty functions are divided into two 

distinct penalty types:  

1. Constant penalties are fixed penalties that are 

statically defined irrespective of any other 

factors. 

2. Dynamic penalties are based on a nonstatic 

variable designed to reflect the value of a 

violation. Dynamic penalties are further 

classified to model the impact of a violation: α 

penalties are based on the relative size of the job 

or the established price, whereas β penalties 

attempt to model the increased cost incurred by 

the consumer using a ratio of the original and 

substitute prices. β penalties are only possible 

when second chance substitute providers are 

used. Specifically, the different penalty 

functions are: 

Constant: a constant penalty defined statically 

irrespective of the job requirements or bid price 

 

0,  IRccPdefaulter  

 

Job units: an 𝛼 penalty based on the requirements of the 

job in units. Junits is the number of units in a job, and c is a 

constant penalty per unit 

 

0,  IRccJP unitsdefault  

 

Win price (WP): an 𝛼 penalty based on the winning bid 

(pre-substitutes). Pricewin is the price to be paid by the 

winning bidder: 

windefault iceP Pr  

 

Substitute price: a 𝛼 penalty based on the substitute bid. 

Pricesubstitute is the price to be paid by the substitute 

winning bidder: 

 

substitutedefault iceP Pr  

 

Bid difference (BD): a β penalty defined as the difference 

between the original win price and the substitute price 

 

winsubstitutedefault iceiceP PrPr 
 

 

Bid difference/depth: a β penalty that determines the 

impact of an individual provider defaulting on a contract. 

The impact is calculated as the difference between 

original win price and substitute price evaluated over all 

defaulters. In the first configuration only a single penalty 

is applied to the original winning provider, the second 

configuration imposes a fraction of the penalty on each 

defaulting provider. Depthsubstitute is the number of 

substitutes considered 

substitute
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In general, there is a tradeoff between fairness 

and complexity of penalty functions. For example, while a 

constant penalty is easy to enforce and requires no 

computation it is not fair in terms of which defaulters pay 

the penalty, it also does not reflect the size or value of the 

job (both small and large jobs are penalized equally). 

Application of penalties to each defaulting party is 

arguably fairer, however it is much more complicated to 

determine each defaulters effect and to also apply the 

penalty to multiple parties. 

 

VI. EVALUATION 

Each of the strategies is evaluated with respect to 

allocation occupancy, utilization, and economic 

implications. Occupancy is defined as the number of 

contracts satisfied and utilization as the amount of a host’s 

resource capacity that is used. 

 

A. Synthetic Workloads 

Several synthetic workl oad that generates 

different workload conditions are developed. Each 

synthetic workload is derived from a production Grid 

trace obtained from AuverGrid, a small sized Grid in the 

Enabling Grids for E-science in Europe (EGEE) project 

which uses Large Hadron Collider Computing Grid 

(LCG) middleware. It has 475 computational nodes 

organized into five clusters (each has 112, 84, 186, 38, 55 

nodes). This trace was chosen as it was the most complete 

trace available in the Grid Workloads Archive [27]. While 

AuverGrid is a relatively small scale Grid the model 

obtained from the workload can be scaled up to be used in 

the analysis of these strategies.  

The AuverGrid workload is characteristic of a 

traditional batch workload model, in which jobs arrive 

infrequently and are on average long running. Using the 

entire workload as a basis for the following experiments is 

infeasible due to the duration (1 year) and cumulative 

utilization (475 processors). There are two ways to use 

this data: a sample can be taken over a fixed period of 

time to simulate a workload characterized by long 

duration batch processing a synthetic high-performance 

workload can be generated to reflect a modern fine 

grained dynamic workload by increasing the throughput 

while maintaining the general workload. The dynamic 

usage model is designed to more accurately represent 

modern (interactive) usage of distributed systems as seen 

in Software-as-a-Service (SaaS) requests, workflows, and 

smaller scale ad hoc personal use on commercial clouds. 

These two interpretations of the data have been used to 

generate workloads at either end of the perceived use case 

spectrum.  

 

1. Batch Model: The batch workload is generated 

from a two day sample of the complete AuverGrid trace. 

The two days chosen include the busiest day (number of 

jobs) in the trace. This model represents favourable 

auction conditions as the ratio of auction latency to 

interarrival time is large. Reducing the sample size such 

that this workload can be hosted on our 20 machine test 

bed is impossible as the resulting number of jobs would 

be minimal. Instead, experiments using the batch 

workload utilize an increased test bed capacity by 

simulating “larger” providers.  

 

2. Dynamic Model: Due to the mainstream adoption 

of cloud computing, usage is evolving from a traditional 

batch model to a more dynamic on demand model. 

Modern usage is therefore characterized by extensible, 

short duration, ad hoc, and interactive usage. To simulate 

this type of high performance dynamic model reduce the 

time based attributes of the workload by a factor of 1,000. 

By reducing each parameter equally relativity between 

parameters is maintained and therefore the distribution is 

not affected.  

 

B. Experimental Testbed 

In these experiments, the testbed is configured with 20 

virtualized providers distributed over a 10 machine 

Grid(five Windows Vista, five Fedora Core) connected by 

agigabit Ethernet network. The machines each have Core2 

Duo 3.0 GHz processors with 4 GB of RAM.A single 

Auction Manager and Contract Manager are run on one 

host, with each allocated 1 GB of memory. The 20 

providers each have 512 MB of memory allocated to the 

hosting container. Using the dynamic workloads each 

provider is representative of a single node (100 percent 

capacity). To satisfy the increased requirements of the 

batch model providers are configured to represent 15 

nodes (1,500 percent) in the batch experiments. 

 

C. Strategy Evaluation 

The strategies are evaluated with respect to the number of 

auctions completed, contracts created and overall system 

utilization. The strategies are denoted: Overbidding (O), 

Second chance substitutes (S), and flexible advanced 

Reservations (R). In addition a Guaranteed (G) strategy is 

also implemented against which we compare the other 

strategies. In the following experiments, a sealed bid 

second price (Vickrey) protocol is used to allocate tasks, 

each provider implements a random bidding policy 

irrespective of job requirements or current capacity. 

Contracts are accepted only if there is sufficient capacity 

regardless of what was bid. In the following results, we 

run each experiment three times and state the average 
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result. The different strategy combinations examined are 

designed to isolate particular properties of the strategies 

and to satisfy dependencies between strategies (e.g., 

second chance providers are only valuable when providers 

overbid). The major difference between these strategy 

combinations is related to the options available when 

calculating a bid, and what actions can be taken at the 

auction and contract stages of negotiation. 

G: Providers bid based on expected utilization, that is 

they never bid beyond their allotted capacity. As bids are 

a guarantee, providers cannot reject a resulting contract 

and therefore there are no opportunities to use second 

chance substitute providers. This combination does not 

support advanced reservation, therefore tasks must be 

started immediately following contract creation. 

 

O: Providers bid based on their actual utilization 

(irrespective of any outstanding bids), as providers can bid 

beyond capacity they may choose to accept or reject 

contracts depending on capacity at the time of contract 

creation. Second chance substitute providers and 

advanced reservations are not available in this 

configuration. 

 

S + O: Providers bid based on their actual utilization, in 

addition to accepting and rejecting contracts, losing 

providers may be substituted with a second chance 

provider at the contract stage if the winning provider does 

not have sufficient capacity. 

 

R+O: Providers bid based on projected utilization at the 

time of job execution. This combination allows providers 

to schedule (and reschedule) tasks according to the 

defined reservation window, likewise contracts can be 

accepted if there is sufficient projected capacity during the 

reservation window defined by the task. No second 

chance substitutes are considered in this combination. 

 

R + S + O: Providers bid based on projected utilization 

at the time of job execution. In the event that a contract 

cannot be satisfied in the reservation window (even after 

moving other tasks), a losing provider may be substituted 

with a second chance provider.  

 

In each experiment tasks from the workload trace 

are submitted to DRIVE for allocation. For each task 

DRIVE conducts an auction allowing each provider to 

bid. At the conclusion of the auction DRIVE determines 

the winner and attempts to create a contract with the 

winning provider. Throughout the process the Auction 

Manager logs information about each auction (including 

bids and winners), the Contract Manager logs information 

about contract creation (including rejections and substitute 

providers), and DRIVE Agents log information about 

their bids and their current and projected utilization. This 

information is used to produce the results discussed in this 

section. Task activity is simulated by each provider based 

on the utilization defined in the workload trace. Total 

system utilization is calculated by adding together the 

(self-reported) utilization for each provider in the system. 

 

1. Guaranteed Bidding Strategy: In the baseline 

configuration, providers implement a guaranteed bidding 

strategy where every bid by a provider is a guarantee that 

there will be sufficient capacity. Rejections occur during 

auctioning and no contracts are rejected, as no provider 

should ever bid outside its means. A large number of tasks 

are rejected even though there is sufficient available 

overall capacity. The reason for this is the number of 

concurrent auctions taking place and the latency between 

submitting a bid and the auction concluding. If the auction 

latency is reduced or the frequency of tasks being 

submitted is reduced, the number of tasks allocated and 

total utilization would improve as bidders would have a 

clearer picture of utilization when bidding on subsequent 

auctions. 

 

2. Overbooking Strategy: In the high dynamic 

workload and the batch model, the peak system utilization 

approaches the maximum   available capacity of the 

testbed when providers can bid beyond capacity. The 

average utilization and percentage of tasks allocated for 

all workloads is more than double that of the guaranteed 

strategy which highlights the value of overbooking. The 

allocation improvement exhibited in the batch workload 

represents the single biggest gain of any strategy and 

results in near optimal allocation and utilization. In each 

workload, very few auctions fail as providers only reach 

close to maximum capacity for a short period of time.  

However, the number of contracts unable to be 

established directly effects system performance as the 

auction and contract negotiation processes are wasted. 

 

3. Reservations and Overbooking: In the AuverGrid 

workload trace, there is no explicit execution window, so 

in order to evaluate reservation strategies and analyze the 

effect on allocation and utilization we define an execution 

window for each task as 50 percent of the task. In this 

experiment providers implement a simple First Come First 

Served scheduling policy. Each provider again uses an 

overbooking strategy due to the considerable utilization 

improvements seen over guaranteed bidding. As the 

density of the workload increases the improvement gained 
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by using reservations is greater than that of computing 

substitutes 

 

4. Reservations, Substitutes, and Overbooking: The 

final configuration combines the use of reservations with 

the ability to compute substitute providers and overbook 

resources leading to increase in successful bidding. 

 

5. Just-in-Time Bidding 

JIT bidding is proposed as a means of reducing 

the effect of auction latency. The increased allocation 

rates due to JIT bidding are shown in Figs. 2 and 3 for the 

medium and high utilization workloads, respectively. The 

low utilization workload and batch model are not shown 

as the allocation rate is near optimal using the other 

strategies. For both the medium and high workload the 

number of tasks allocated increases by approximately 10 

percent for each strategy up until a point of saturation—at 

which time not all bids are received before the auction 

closes.  

 

The two strategies employing second chance 

substitutes in both workloads do not exhibit as much of an 

improvement, as auctions will not fail as long as 

alternative substitutes are available. Although the 

utilization improvements are smaller for the second 

chance strategies, the number of substitutes considered 

decreases as bidding occurs closer to the auction close. 

This is an additional benefit as it reduces the overhead 

required to compute substitute providers. 

 

VII. CONCLUSION 

 

The utility model employed by commercial cloud 

providers has remotivated the need for efficient and 

responsive economic resource allocation in high-

performance computing environments. While economic 

resource allocation provides a well studied and efficient 

means of scalable decentralized allocation it has been 

stereotyped as a low performance solution due to the 

resource commitment overhead and latency in the 

allocation process. The high utilization strategies 

proposed in this paper are designed to minimize the 

impact of these factors to increase occupancy and improve 

system utilization. 

 

The high utilization strategies have each been 

implemented in the DRIVE meta scheduler and evaluated 

using a series of batch and interactive workloads designed 

to model different scenarios, including multiple high 

throughput, short job duration workloads in which auction 

mechanisms typically perform poorly. The individual 

strategies, and the combination of the different strategies, 

were shown to dramatically improve occupancy and 

utilization in a high performance situation. 

 

 

 

 
 

Fig: 2 JIT bidding for the medium workload 
 

 

 
 

Fig: 3 JIT bidding for the high workload 
 

In addition to occupancy and utilization 

improvements these strategies also provide advantages 

under differing economic conditions. For example, the use 

of substitute providers was shown to be more price 

agnostic than other strategies due to the decreased 

allocation rate when a linear bidding strategy is used. 

Provider revenue also increased with the use of the 

proposed strategies, in part due to the increased allocation 

rate obtained. Finally, the effect of penalties on total 

revenue was shown to be heavily dependent on the 

penalty function used.  

 

The bid difference penalty, which represents the 

impact of the contract breach, resulted in only a small loss 

of total revenue across all providers. These results 

highlight that while these strategies can dramatically 
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improve allocation performance, participants must fully 

consider the negative effects of the strategy used and 

associated penalty functions in order to optimize revenue. 
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