

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

 Copyright to IJARCCE www.ijarcce.com 1230

EFFICIENT RESOURCE ALLOCATION

STRATEGIES FOR CLOUD DATA CENTERS
Jeyaram.G

1
, Vidhya.V

2

Faculty of CSE, Annai Vailankanni College of Engineering, Kanyakumari, India
 1

Faculty of CSE, Annai Vailankanni College of Engineering, Kanyakumari, India
 2

ABSTRACT: Cloud computing has become a new age technology in enterprises and markets. Clouds allow access to

applications and associated data from anywhere. Companies are able to rent resources from cloud for storage and other

computational purposes so that their infrastructure cost can be reduced significantly. Further they can make use of company-

wide access to applications, based on pay-as-you-go model. Hence there is no need for getting licenses for individual products.

However one of the major pitfalls in cloud computing is related to optimizing the resources being allocated. Because of the

uniqueness of the model, resource allocation is performed with the objective of minimizing the costs associated with it. The other

challenges of resource allocation are meeting customer demands and application requirements. The performance limitations of

existing economic allocation models are analysed by defining strategies to reduce the failure and reallocation rate, increase

occupancy and thereby increase the obtainable utilization of the system. The high-performance resource utilization strategies

presented can be used by market participants without requiring dramatic changes to the allocation protocol. The strategies

considered include overbooking, advanced reservation, just-in-time bidding, and using substitute providers for service delivery.

The proposed strategies have been implemented in a distributed meta scheduler and evaluated with respect to Grid and cloud

deployments.

Index Terms: Resource allocation, cloud computing, grid computing, cloud services.

I. INTRODUCTION

CLOUD computing helps consumers to

outsource computation, storage and other tasks to third

party cloud providers and pay only for the resources used.

At present the models employed are simplistic like posted

price but the system moves towards more sophisticated

mechanisms, such as spot-pricing. In near future a global

computation market could be realized by a high-

performance federated architecture that spans both Grid

and cloud computing providers. This type of architecture

necessitates the use of economic aware allocation

mechanisms driven by the underlying allocation

requirements of cloud providers.

Computational economies have long been

advertized as a means of allocating resources in both

centralized and decentralized computing systems [1]. An

advantage of such system is allocation efficiency,

scalability, clear incentives, and well-understood

mechanisms as advantages. The system also includes poor

performance, high latency, and high overheads.

Overheads in the sense, in competitive economy

resources are typically “reserved” by m participants for

the duration of a negotiation. In most cases, there are only

n “winning” participants, therefore all other m _ n

reservations are essentially wasted for the duration of that

negotiation. Moreover, there is an opportunity cost to

reserving resources during a negotiation, as they will not

be available for other negotiations that begin during the

interval of the first negotiation. This type of scenario is

clearly evident in auction or tender markets, however it

can also be seen in any negotiation in which parties are

competing against one another for the goods on offer. In

any case, this wasteful negotiation process is expensive in

both time and cost and therefore reduces the overall

utilization of the system.

In this paper, these inefficiencies are addressed

by two general principles: first, avoid commitment of

resources, and second, avoid repeating negotiation and

allocation processes. We have distilled these principles

into five high-performance resource utilization strategies,

namely: overbooking, advanced reservation, just-in-time

(JIT) bidding, progressive contracts, and using substitute

providers to compensate for encouraging

oversubscription. These strategies can be employed either

through allocation protocols and/or by participants, to

increase resource occupancy and therefore optimize

overall utilization. Each of the strategies is examined

experimentally within the context of a market-based cloud

or Grid using the DRIVE meta scheduler [2].

II. RELATED WORK

The earliest computational market enabled users

to bid for compute time on a shared departmental

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

 Copyright to IJARCCE www.ijarcce.com 1231

machine. DRIVE, the system used for the experimental

work in this paper, is one example of such a federated

meta scheduler and is designed around the idea of

“infrastructure free” secure cooperative markets. Another

prominent example is Inter Cloud [8] which features a

generic market model to match requests with providers

using different negotiation protocols. Another alternative

approach is spot pricing.

Overbooking has been previously used in

computational domains as a way to increase utilization

and profit [10], [11]. In [10] overbooking is used to some

extent to compensate for “no shows” and poorly estimated

task duration. In [11], backfilling is combined with

overbooking to increase provider profit.

 Globus Architecture for Reservation and

Allocation (GARA) [12] was one of the first projects to

define basic advanced reservation architecture to support

QoS reservations over heterogeneous resources. Many

other schedulers have been developed so reservation

aware schedulers have been shown to improve system

utilization due to the additional flexibility specified by

some consumers, [15].

Various papers have looked at last minute

bidding and “sniping” [16], [17]. Typical motivation for

last minute bidding is to combat “shill bidders” (fake

bidders raising the price) and incremental bidding

(bidding in increments rather than bidding ones true value

or proxy bidding). JIT bidding for sealed bid auctions was

first proposed in some earlier work [18] as a means of

reducing the effect of auction latency in distributed

auctions.

III. OPPORTUNITIES AND HIGH UTILIZATION

STRATEGIES

In a traditional auction, providers auction

resources by soliciting consumer’s bids, at the conclusion

of the auction an agreement is established to provide

resources for the winning price, when the agreement

expires the resources are returned. Reverse auctions

switch the roles of provider and consumer, therefore

mapping more accurately to user requested resource

allocation (e.g., in a cloud). The life cycle of a reverse

auction in DRIVE is shown in Fig. 1. In a reverse auction

a consumer “auctions” a task (or job), providers then bid

for the right to provide the resources required to host the

task. The following high-performance strategies are

defined according to a reverse auction model, however

they could also be applied in a traditional auction model.

A. Preauction

1. Overbooking: Overbooking has been shown to

provide substantial utilization and profit advantages [10]

due to “no shows” and overestimated task duration. While

overbooking may seem risky it is a common technique

used in yield management and can be seen in many

commercial domains, most notably air travel [19], [20]

and bandwidth reservation [21]. Overbooking policies are

carefully created and are generally based on historical

data. Due to the widespread adoption of overbooking

techniques in commercial domains there is substantial

economic theory underpinning appropriate strategy [22],

[23].

Fig 1: Reverse auction life cycle in DRIVE

B. During Auction

1. Just-in-Time Bidding: During negotiation it is

possible that resource state may change and therefore

invalidate a provider’s valuation (or bid). In general, there

are two ways to minimize the effect of latency:

 Reducing the duration of the auction. The

problem with this approach is that there is minimal time

for providers to discover the auction and to compute their

bids.

 Bid as late as possible. The advantage with this

approach is that providers can compute their bids with the

most up to date resource state and resources are reserved

for a shorter time. The primary problem with this

approach is time sensitivity, the auction can be missed if

the bid is too late or experiences unexpected network

delays.

2. Flexible Advanced Reservations: Advanced

reservation support is commonly used in distributed

systems to provide performance predictability, meet

resource requirements, and provide quality of service

(QoS) guarantees [12], [24]. As Grid and cloud systems

evolve the task of planning job requirements is becoming

Auction
Request

Auction
Request

Agreement
[phase 1]

Resource
Confirmed
Contract
[phase 2]

Service
Provisioning

Resouce
Returned

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

 Copyright to IJARCCE www.ijarcce.com 1232

more complex, requiring fine grained coordination of

interdependent jobs in order to achieve larger goals. Often

tasks require particular resources to be available at certain

times in order to run efficiently. Tasks may also require

coordinated execution due to dependencies between one

another. In addition to consumer advantages, providers

also benefit by being given flexibility in terms of task

execution and therefore they have the opportunity to use

advanced scheduling techniques to optimize resource

usage. This increase flexibility to substantial performance

improvements for providers.

C. Post auction

1. Two Phase Contracts: Auction latency may restrict

providers participating in future negotiations due to a lack

of knowledge of the outcome of ongoing or previous

negotiations. There are two general approaches

1. Providers can reserve resources for the duration of

the negotiation immediately,

2. They can wait for the result of the allocation before

reservation.

Both the case is ideal—initial reservation leads to

underutilization as a negotiation typically has one winner

and multiple losers, while late reservation results in

contract violations as resource state may change between

negotiation and reservation. To minimize the effect of

latency we propose a progressive two phase contract

mechanism that reflects the various stages of negotiation.

The two phase contract structure is shown in Fig.

1. As the result of an allocation a tentative agreement is

created between the user and winning provider(s) (phase

1), before redemption this agreement must be hardened

into a binding agreement (or contract) that defines

particular levels of service to be delivered along with a set

of rewards and penalties for honoring or breaking the

agreement (phase 2).

2. Second Chance Substitute Providers: If a winning

provider cannot meet their obligations at the conclusion of

an auction (due to overbooking), it is a waste resources to

reexecute the auction process when there is sufficient

capacity available from nonwinning providers. In this

case, the losing bidders can be given a second chance to

win the auction, by recomputing the auction without the

defaulting bidder. This technique can reduce the

allocation failures generated from overbooking and

therefore increase utilization of the system. One negative

aspect of this approach is the potential for increased

consumer cost, as the substitute price (SP) is, by

definition, greater than the previous winning price.

IV. DRIVE

Distributed Resource Infrastructure for a Virtual

Economy (DRIVE) [2], [25] is a distributed economic

metascheduler designed to allocate workload in

distributed and federated computing environments.

Allocation in DRIVE is abstracted through an economic

market which allows any economic protocol to be used.

This architecture minimizes the need for dedicated

infrastructure and distributes management functionality

across participants. The co-op architecture is possible due

to the deployment of secure economic protocols which

provide security guarantees in untrusted environments

[26].

In DRIVE, each resource provider is represented

by a DRIVE Agent that implements standard functionality

including; reservations, policies, valuation, and plug-ins

for the chosen economic protocol (e.g., bidding). DRIVE

Agents use policies and pricing functions to price goods.

The DRIVE marketplace includes a number of

independent services and mechanisms that provide

common functionality including resource discovery,

allocation, security, VO management, and contract

(agreement) management. DRIVE is designed to support

flexible deployment scenarios, it is therefore independent

from a particular type of task (e.g., service request, cloud

VM or Grid job) in each phase of the task life cycle

(submission, allocation, and execution).

V. EXPERIMENTAL ECONOMY

The pricing functions used are primarily based upon

local information known by the provider and aim to

incorporate the perceived risk of a transaction. For

example, the price may be increased if a provider has little

spare capacity.

A. Pricing Functions

All bid prices are determined based on a

combination of current conditions, projected conditions or

previous bidder experience. In the following equations,

Punit is the price per job unit and b denotes a bid in the

specified range Bb ,0 . Job units (JU) are defined as

the product of CPU utilization and duration (Junits =

Jutilization _ Jduration). The Random and Constant pricing

functions are baseline functions.

Random: the unit price is determined

irrespective ofany other factors

),0(BRandomPunit

Constant: the unit price is the same for every

request

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

 Copyright to IJARCCE www.ijarcce.com 1233

),0(, BccPunit

Available capacity: the unit price is calculated

based on projected provider capacity at the time when the

job would execute. Uprovider is the projected utilization of

the provider, Ujob is the utilization of the requested job,

and Cprovider is the total capacity of the provider

B
C

UU
P

provider

jobprovider

unit

Win/loss ratio: the unit price is based on the

previous win/loss ratio seen by the individual provider. R

is the specified ratio, W is the number of wins since time

t0, and L is the number of losses since time t0

2
)(

B

R

B
LRWPunit

Time based: the unit price is based on the time since the

provider last won an auction. The unit price decrements

every Tperiod seconds, Tlast win is the time since the last

allocation. Tlast win is set to 0 at time t0

period

lastwin
unit

T

T
BP

B. Penalty Functions

The penalty functions are divided into two

distinct penalty types:

1. Constant penalties are fixed penalties that are

statically defined irrespective of any other

factors.

2. Dynamic penalties are based on a nonstatic

variable designed to reflect the value of a

violation. Dynamic penalties are further

classified to model the impact of a violation: α

penalties are based on the relative size of the job

or the established price, whereas β penalties

attempt to model the increased cost incurred by

the consumer using a ratio of the original and

substitute prices. β penalties are only possible

when second chance substitute providers are

used. Specifically, the different penalty

functions are:

Constant: a constant penalty defined statically

irrespective of the job requirements or bid price

0, IRccPdefaulter

Job units: an 𝛼 penalty based on the requirements of the

job in units. Junits is the number of units in a job, and c is a

constant penalty per unit

0, IRccJP unitsdefault

Win price (WP): an 𝛼 penalty based on the winning bid

(pre-substitutes). Pricewin is the price to be paid by the

winning bidder:

windefault iceP Pr

Substitute price: a 𝛼 penalty based on the substitute bid.

Pricesubstitute is the price to be paid by the substitute

winning bidder:

substitutedefault iceP Pr

Bid difference (BD): a β penalty defined as the difference

between the original win price and the substitute price

winsubstitutedefault iceiceP PrPr

Bid difference/depth: a β penalty that determines the

impact of an individual provider defaulting on a contract.

The impact is calculated as the difference between

original win price and substitute price evaluated over all

defaulters. In the first configuration only a single penalty

is applied to the original winning provider, the second

configuration imposes a fraction of the penalty on each

defaulting provider. Depthsubstitute is the number of

substitutes considered

substitute

winsubstitute
default

Depth

iceice
P

PrPr

substitute

winsubstitute
ii

Depth

iceice
PD

PrPr
:

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

 Copyright to IJARCCE www.ijarcce.com 1234

In general, there is a tradeoff between fairness

and complexity of penalty functions. For example, while a

constant penalty is easy to enforce and requires no

computation it is not fair in terms of which defaulters pay

the penalty, it also does not reflect the size or value of the

job (both small and large jobs are penalized equally).

Application of penalties to each defaulting party is

arguably fairer, however it is much more complicated to

determine each defaulters effect and to also apply the

penalty to multiple parties.

VI. EVALUATION

Each of the strategies is evaluated with respect to

allocation occupancy, utilization, and economic

implications. Occupancy is defined as the number of

contracts satisfied and utilization as the amount of a host’s

resource capacity that is used.

A. Synthetic Workloads

Several synthetic workl oad that generates

different workload conditions are developed. Each

synthetic workload is derived from a production Grid

trace obtained from AuverGrid, a small sized Grid in the

Enabling Grids for E-science in Europe (EGEE) project

which uses Large Hadron Collider Computing Grid

(LCG) middleware. It has 475 computational nodes

organized into five clusters (each has 112, 84, 186, 38, 55

nodes). This trace was chosen as it was the most complete

trace available in the Grid Workloads Archive [27]. While

AuverGrid is a relatively small scale Grid the model

obtained from the workload can be scaled up to be used in

the analysis of these strategies.

The AuverGrid workload is characteristic of a

traditional batch workload model, in which jobs arrive

infrequently and are on average long running. Using the

entire workload as a basis for the following experiments is

infeasible due to the duration (1 year) and cumulative

utilization (475 processors). There are two ways to use

this data: a sample can be taken over a fixed period of

time to simulate a workload characterized by long

duration batch processing a synthetic high-performance

workload can be generated to reflect a modern fine

grained dynamic workload by increasing the throughput

while maintaining the general workload. The dynamic

usage model is designed to more accurately represent

modern (interactive) usage of distributed systems as seen

in Software-as-a-Service (SaaS) requests, workflows, and

smaller scale ad hoc personal use on commercial clouds.

These two interpretations of the data have been used to

generate workloads at either end of the perceived use case

spectrum.

1. Batch Model: The batch workload is generated

from a two day sample of the complete AuverGrid trace.

The two days chosen include the busiest day (number of

jobs) in the trace. This model represents favourable

auction conditions as the ratio of auction latency to

interarrival time is large. Reducing the sample size such

that this workload can be hosted on our 20 machine test

bed is impossible as the resulting number of jobs would

be minimal. Instead, experiments using the batch

workload utilize an increased test bed capacity by

simulating “larger” providers.

2. Dynamic Model: Due to the mainstream adoption

of cloud computing, usage is evolving from a traditional

batch model to a more dynamic on demand model.

Modern usage is therefore characterized by extensible,

short duration, ad hoc, and interactive usage. To simulate

this type of high performance dynamic model reduce the

time based attributes of the workload by a factor of 1,000.

By reducing each parameter equally relativity between

parameters is maintained and therefore the distribution is

not affected.

B. Experimental Testbed

In these experiments, the testbed is configured with 20

virtualized providers distributed over a 10 machine

Grid(five Windows Vista, five Fedora Core) connected by

agigabit Ethernet network. The machines each have Core2

Duo 3.0 GHz processors with 4 GB of RAM.A single

Auction Manager and Contract Manager are run on one

host, with each allocated 1 GB of memory. The 20

providers each have 512 MB of memory allocated to the

hosting container. Using the dynamic workloads each

provider is representative of a single node (100 percent

capacity). To satisfy the increased requirements of the

batch model providers are configured to represent 15

nodes (1,500 percent) in the batch experiments.

C. Strategy Evaluation

The strategies are evaluated with respect to the number of

auctions completed, contracts created and overall system

utilization. The strategies are denoted: Overbidding (O),

Second chance substitutes (S), and flexible advanced

Reservations (R). In addition a Guaranteed (G) strategy is

also implemented against which we compare the other

strategies. In the following experiments, a sealed bid

second price (Vickrey) protocol is used to allocate tasks,

each provider implements a random bidding policy

irrespective of job requirements or current capacity.

Contracts are accepted only if there is sufficient capacity

regardless of what was bid. In the following results, we

run each experiment three times and state the average

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

 Copyright to IJARCCE www.ijarcce.com 1235

result. The different strategy combinations examined are

designed to isolate particular properties of the strategies

and to satisfy dependencies between strategies (e.g.,

second chance providers are only valuable when providers

overbid). The major difference between these strategy

combinations is related to the options available when

calculating a bid, and what actions can be taken at the

auction and contract stages of negotiation.

G: Providers bid based on expected utilization, that is

they never bid beyond their allotted capacity. As bids are

a guarantee, providers cannot reject a resulting contract

and therefore there are no opportunities to use second

chance substitute providers. This combination does not

support advanced reservation, therefore tasks must be

started immediately following contract creation.

O: Providers bid based on their actual utilization

(irrespective of any outstanding bids), as providers can bid

beyond capacity they may choose to accept or reject

contracts depending on capacity at the time of contract

creation. Second chance substitute providers and

advanced reservations are not available in this

configuration.

S + O: Providers bid based on their actual utilization, in

addition to accepting and rejecting contracts, losing

providers may be substituted with a second chance

provider at the contract stage if the winning provider does

not have sufficient capacity.

R+O: Providers bid based on projected utilization at the

time of job execution. This combination allows providers

to schedule (and reschedule) tasks according to the

defined reservation window, likewise contracts can be

accepted if there is sufficient projected capacity during the

reservation window defined by the task. No second

chance substitutes are considered in this combination.

R + S + O: Providers bid based on projected utilization

at the time of job execution. In the event that a contract

cannot be satisfied in the reservation window (even after

moving other tasks), a losing provider may be substituted

with a second chance provider.

In each experiment tasks from the workload trace

are submitted to DRIVE for allocation. For each task

DRIVE conducts an auction allowing each provider to

bid. At the conclusion of the auction DRIVE determines

the winner and attempts to create a contract with the

winning provider. Throughout the process the Auction

Manager logs information about each auction (including

bids and winners), the Contract Manager logs information

about contract creation (including rejections and substitute

providers), and DRIVE Agents log information about

their bids and their current and projected utilization. This

information is used to produce the results discussed in this

section. Task activity is simulated by each provider based

on the utilization defined in the workload trace. Total

system utilization is calculated by adding together the

(self-reported) utilization for each provider in the system.

1. Guaranteed Bidding Strategy: In the baseline

configuration, providers implement a guaranteed bidding

strategy where every bid by a provider is a guarantee that

there will be sufficient capacity. Rejections occur during

auctioning and no contracts are rejected, as no provider

should ever bid outside its means. A large number of tasks

are rejected even though there is sufficient available

overall capacity. The reason for this is the number of

concurrent auctions taking place and the latency between

submitting a bid and the auction concluding. If the auction

latency is reduced or the frequency of tasks being

submitted is reduced, the number of tasks allocated and

total utilization would improve as bidders would have a

clearer picture of utilization when bidding on subsequent

auctions.

2. Overbooking Strategy: In the high dynamic

workload and the batch model, the peak system utilization

approaches the maximum available capacity of the

testbed when providers can bid beyond capacity. The

average utilization and percentage of tasks allocated for

all workloads is more than double that of the guaranteed

strategy which highlights the value of overbooking. The

allocation improvement exhibited in the batch workload

represents the single biggest gain of any strategy and

results in near optimal allocation and utilization. In each

workload, very few auctions fail as providers only reach

close to maximum capacity for a short period of time.

However, the number of contracts unable to be

established directly effects system performance as the

auction and contract negotiation processes are wasted.

3. Reservations and Overbooking: In the AuverGrid

workload trace, there is no explicit execution window, so

in order to evaluate reservation strategies and analyze the

effect on allocation and utilization we define an execution

window for each task as 50 percent of the task. In this

experiment providers implement a simple First Come First

Served scheduling policy. Each provider again uses an

overbooking strategy due to the considerable utilization

improvements seen over guaranteed bidding. As the

density of the workload increases the improvement gained

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

 Copyright to IJARCCE www.ijarcce.com 1236

by using reservations is greater than that of computing

substitutes

4. Reservations, Substitutes, and Overbooking: The

final configuration combines the use of reservations with

the ability to compute substitute providers and overbook

resources leading to increase in successful bidding.

5. Just-in-Time Bidding

JIT bidding is proposed as a means of reducing

the effect of auction latency. The increased allocation

rates due to JIT bidding are shown in Figs. 2 and 3 for the

medium and high utilization workloads, respectively. The

low utilization workload and batch model are not shown

as the allocation rate is near optimal using the other

strategies. For both the medium and high workload the

number of tasks allocated increases by approximately 10

percent for each strategy up until a point of saturation—at

which time not all bids are received before the auction

closes.

The two strategies employing second chance

substitutes in both workloads do not exhibit as much of an

improvement, as auctions will not fail as long as

alternative substitutes are available. Although the

utilization improvements are smaller for the second

chance strategies, the number of substitutes considered

decreases as bidding occurs closer to the auction close.

This is an additional benefit as it reduces the overhead

required to compute substitute providers.

VII. CONCLUSION

The utility model employed by commercial cloud

providers has remotivated the need for efficient and

responsive economic resource allocation in high-

performance computing environments. While economic

resource allocation provides a well studied and efficient

means of scalable decentralized allocation it has been

stereotyped as a low performance solution due to the

resource commitment overhead and latency in the

allocation process. The high utilization strategies

proposed in this paper are designed to minimize the

impact of these factors to increase occupancy and improve

system utilization.

The high utilization strategies have each been

implemented in the DRIVE meta scheduler and evaluated

using a series of batch and interactive workloads designed

to model different scenarios, including multiple high

throughput, short job duration workloads in which auction

mechanisms typically perform poorly. The individual

strategies, and the combination of the different strategies,

were shown to dramatically improve occupancy and

utilization in a high performance situation.

Fig: 2 JIT bidding for the medium workload

Fig: 3 JIT bidding for the high workload

In addition to occupancy and utilization

improvements these strategies also provide advantages

under differing economic conditions. For example, the use

of substitute providers was shown to be more price

agnostic than other strategies due to the decreased

allocation rate when a linear bidding strategy is used.

Provider revenue also increased with the use of the

proposed strategies, in part due to the increased allocation

rate obtained. Finally, the effect of penalties on total

revenue was shown to be heavily dependent on the

penalty function used.

The bid difference penalty, which represents the

impact of the contract breach, resulted in only a small loss

of total revenue across all providers. These results

highlight that while these strategies can dramatically

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 2, February 2013

 Copyright to IJARCCE www.ijarcce.com 1237

improve allocation performance, participants must fully

consider the negative effects of the strategy used and

associated penalty functions in order to optimize revenue.

ACKNOWLEDGEMENT

 We thank our parents for their full support and

continuous encouragement without whom we could not

have achieved this level. The authors would like to thank

the anonymous reviewers for their comments that helped

to improve the quality of this paper. The authors are solely

responsible for the views expressed in this paper.

REFERENCES

[1] I.E. Sutherland, “A Futures Market in Computer Time,”
Comm.ACM, vol. 11, no. 6, pp. 449-451, 1968.

[2] K. Chard and K. Bubendorfer, “Using Secure Auctions to Build A

Distributed Meta-Scheduler for the Grid,” Market Oriented Grid and
Utility Computing, series Wiley Series on Parallel and Distributed

Computing, R. Buyya and K. Bubendorfer, eds., pp. 569-588, Wiley,

2009.
[3] K. Chard, K. Bubendorfer, and P. Komisarczuk, “High Occupancy

Resource Allocation for Grid and Cloud Systems, a Study With Drive,”

Proc. 19th ACM Int’l Symp. High Performance Distributed Computing
(HPDC ’10). pp. 73-84, 2010,

[4] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.S.
Stornetta, “Spawn: A Distributed Computational Economy,” IEEE

Trans. Software Eng., vol. 18, no. 2, pp. 103-117, Feb. 1992.

[5] T.W. Malone, R.E. Fikes, K.R. Grant, and M.T. Howard,
“Enterprise: A Market-Like Task Scheduler for Distributed Computing

Environments,” The Ecology of Computation, pp. 177- 205, Elsevier

Science Publishers (North-Holland), 1988.
[6] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/g: An Architecture

for a Resource Management and Scheduling System in a Global

Computational Grid,” Proc. Fourth Int’l Conf. High Performance
Computing in Asia-Pacific Region (HPC Asia ’00), pp. 283-289, 2000.

[7] D. Neumann, J. Sto¨ ßer, A. Anandasivam, and N. Borissov, “Sorma

- Building an Open Grid Market for Grid Resource Allocation,” Proc.
Fourth Int’l Workshop Grid Economics and Business Models (GECON

’07), pp. 194-200, 2007.

[8] R. Buyya, R. Ranjan, and R.N. Calheiros, “Intercloud: Utility-
Oriented Federation of Cloud Computing Environments for Scaling of

Application Services,” Proc. 10th Int’l Conf. Algorithms and

Architectures for Parallel Processing, p. 20, 2010.
[9] M. Mattessa, C. Vecchiola, and R. Buyya, “Managing Peak Loads by

Leasing Cloud Infrastructure Services from a Spot Market,” Proc. 12th

IEEE Int’l Conf. High Performance Computing and Comm. (HPCC ’10),
pp. 1-3, Sept. 2010.

[10] A. Sulistio, K.H. Kim, and R. Buyya, “Managing Cancellations and

No-Shows of Reservations with Overbooking to Increase Resource
Revenue,” Proc. IEEE Eighth Int’l Symp. Cluster Computing and the

Grid (CCGRID ’08) pp. 267-276, 2008,

[11] G. Birkenheuer, A. Brinkmann, and H. Karl, “The Gain of
Overbooking,” Proc. 14th Int’l Workshop Job Scheduling Strategies for

Parallel Proc. (JSSPP), pp. 80-100, 2009.

[12] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A.
Roy, “A Distributed Resource Management Architecture that Supports

Advance Reservations and Co-allocation,” Proc. Seventh Int’l Workshop

Quality of Service (IWQoS ’99), pp. 27-36, 1999,

[13] “Catalina Scheduler,” www.sdsc.edu/catalina/, Jan. 2012.

[14] Sun Microsystems. Sun Grid Engine. http://gridengine.

sunsource.net/, Jan. 2012.
[15] M.A. Netto, K. Bubendorfer, and R. Buyya, “Sla-Based Advance

Reservations with Flexible and Adaptive Time Qos Parameters,”Proc.
Fifth Int’l Conf. Service-Oriented Computing (ICSOC ’07), pp. 119-131,

2007.

[16] A.E. Roth and A. Ockenfels, “Last-Minute Bidding And the
Rulesfor Ending Second-Price Auctions: Evidence from Ebay and

Amazon Auctions on the Internet,” Am. Economic Rev., vol. 92,no. 4,

pp. 1093-1103, 2002.
[17] P. Bajari and A. Hortacsu, “Economic Insights from

InternetAuctions,” J. Economic Literature, vol. 42, pp. 457-486, 2004.

[18] K. Bubendorfer, “Fine Grained Resource Reservation in Open Grid
Economies,” Proc. IEEE Second Int’l Conf. e-Science and Grid

Computing (E-SCIENCE ’06), p. 81, 2006.

[19] B.C. Smith, J.F. Leimkuhler, and R.M. Darrow, “Yield
Managementat American Airlines,” INTERFACES, vol. 22, no. 1, pp. 8-

31, 1992.

[20] Y. Suzuki, “An Empirical Analysis of the Optimal Overbooking
Policies for Us Major Airlines,” Transportation Research Part

E:Logistics and Transportation Rev., vol. 38, no. 2, pp. 135-149, 2002.

[21] R. Ball, M. Clement, F. Huang, Q. Snell, and C.
Deccio,“Aggressive Telecommunications Overbooking Ratios,” Proc.

IEEE 23rd Int’l Conf. Performance, Computing, and Comm.

(IPCCC),pp. 31-38, 2004.
[22] C. Chiu and C. Tsao, “The Optimal Airline Overbooking Strategy

under Uncertainties,” Proc. Eighth Int’l Conf. Knowledge-Based

Intelligent Information and Eng. Systems (KES ’04), pp. 937-945, 2004.
[23] J. Subramanian, S. Stidham Jr., and C.J. Lautenbacher, “Airline

Yield Management with Overbooking, Cancellations, and No- Shows,”

Transportation Science, vol. 33, no. 2, pp. 147-167, 1999.
[24] C. Castillo, G.N. Rouskas, and K. Harfoush, “Efficient Resource

Management Using Advance Reservations for Heterogeneous Grids,”

Proc. IEEE 22nd Int’l Symp. Parallel and Distributed Proc.(IPDPS ’08),
pp. 1-12, Apr. 2008.

[25] K. Chard and K. Bubendorfer, “A Distributed Economic Meta-

Scheduler for the Grid,” Proc. IEEE Eighth Int’l Symp. Cluster
Computing and the Grid (CCGRID ’08), pp. 542-547, 2008.

[26] K. Bubendorfer, B. Palmer, and I. Welch, “Trust and Privacy in

Grid Resource Auctions,” Encyclopedia of Grid Computing
Technologies and Applications, E. Udoh and F. Wang, eds., IGI Global,

[27] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and

D.H.J. Epema, “The Grid Workloads Archive,” Future Generation
Computer Systems, vol. 24, no. 7, pp. 672-686, 2008.

[28] K. Chard, “Drive: A Distributed Economic Meta-Scheduler for the

Federation of Grid and Cloud Systems,” PhD. dissertation, School of
Eng. and Computer Science, Victoria Univ. of Wellington, 2011.

http://gridengine/

