
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Volume 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2503

Impact of Column-oriented Databases on Data

Mining Algorithms

Prof. R. G. Mehta
1
, Dr. N.J. Mistry

2
, Dr. M. Raghuvanshi

3

Associate Professor, Computer Engineering Department, SV National Institute of Technology, Surat, India
1

Professor, Civil Engineering Department, SV National Institute of Technology, Surat, India
2

Principal, Rajiv Gandhi College of Engineering and Research, Nagpur, India
3

Abstract: Traditional data storage is row oriented and ideal for write sensitive transaction process but they are not

suitable for many read sensitive analytical processes. The Data Mining algorithms are analytical in nature and dig the

hidden information from the well of structured/unstructured data. They are more analytic, deal with read/search/lookup

process for data aggregation, will be potentially enabled by column oriented data storage rather than traditional row

oriented storage. In column-oriented database systems (Column store), each database columns are stored separately in

contiguous manner, compressed, and densely packed, as opposed to traditional database systems that store entire

records (rows) one after the other. In this paper we review the architecture of various open sources column oriented

databases like InfiniDB, Monetdb and Infobright. We have compared performance of column store over row stores for

the simple tree based classification algorithm and CAIM discretization algorithm. The Novel rule based storage

structure for the classification model is proposed, posses simple and efficient way of storage and access. Superior

performance of the algorithm with column-stores, have answered the CPU utilization issues for such large-scale data-

intensive applications.

Key Words: Data Mining (DM), OLAP, OLTP, Column store, Row store, Classification, ID3, Discretization, CAIM

I. INTRODUCTION

 The Major Database applications are divided in two

worlds: OLTP and OLAP. Database normal applications

are OLTP but the huge volume and vast information of the

data has created a need of data warehouse for storage

which stores analytical information rather than

transactions [1]. The Decision Support systems (DSS) and

many AI applications need extraction of important and

useful hidden pattern in the form of information from this

huge data warehouses and very huge databases. Many of

these applications use DM algorithms, which are

analytical in nature and they dig the hidden information

from the well of structured/unstructured data [2]. They are

more analytic and deal with read/search/lookup processes

for data aggregation, will be potentially enabled by

column oriented data storage rather than traditional row

oriented storage [3]. In column-oriented database systems

(Column store), each database columns are stored

separately in contiguous manner, compressed, and densely

packed, as opposed to traditional database systems that

store entire records (rows) one after the other [4]. The key

shortfall of column store is that they are not designed for

data that changes often and individual record appending is

not a strong suit. Rather they are designed to quickly

compress, analyze and load large amounts of data that will

remain static [5].

DM algorithms are categorized mainly in three groups:

Classification/prediction, Clustering and Association

mining algorithms. The ID3 algorithm is a famous

decision tree based classification algorithm which classify

the objects in predetermined categories by testing the

values of their properties. It builds the tree in a top down

fashion, starting from a set of objects and a specification

of properties. At each node of the tree, a property is tested

and the results used to partition the object set. The

recursive process is repeated till the set in a given sub tree

is homogeneous with respect to the classification criteria.

In other words it contains objects belonging to the same

category which will be a leaf node of the tree. At each

node, the property to test is chosen based on information

theoretic criteria that seek to maximize information gain

and minimize entropy [2]. In simpler terms, that property

is tested which divides the candidate set in the most

homogeneous subsets.

 In this paper we have compared performance of

column store over row stores for the simple tree based

classification algorithm. The Novel rule based storage

structure for the classification model is proposed, posses

simple and efficient way of storage and access. The

performance of the famous CAIM discretization algorithm

is tested with row and column oriented databases. The

superior execution time of the algorithms with column

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Volume 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2504

stores has answered the CPU utilization issues for such

large-scale data-intensive applications.

II. BACKGROUND AND PRIOR WORK

 In this section, we briefly present major important

features of different column-store and performance

relative to traditional row-stores. The idea of vertically

partitioning and managing database tables to improve

performance has been proposed in many literatures [6] [7]

[8].

 Monetdb is an open-source column oriented DBMS,

developed at the database group of CWI over the past two

decades [9]. Monetdb system pioneered the design of

modern column-oriented database systems and vectorized

query execution.

 In Monetdb every n-ary relational table is represented

as a collection of Binary Association Tables called BATs

without any hole [9]. For a relation R of k attributes, there

exists k BATs, each BAT storing the respective attribute

as (key, attribute) pairs. The 'key' is system generated and

identifies all attributes of the relational tuple. When a

query is fired, the relevant columns are loaded from disk

to memory but are glued together in a tuple N-ary format

only prior to producing the final result. Intermediate

results are also materialized as temporary BATs in a

column format, which can be efficiently reused by

recycling process of the optimizer. SQL queries are

translated by the compiler and the optimizer converts them

into a query execution plan that consists of a sequence of

relational algebra operators. One or more Monetdb

Assembly Language (MAL) instructions will be generated

for each relational operator. Each MAL instruction

performs a single action using one or more columns in a

bulk processing mode.

Fig.1 Monetdb Architecture

Infobright is designed to capture essential

characteristics of the data: maximum values, minimum

values, averages, deltas; whichever attributes can be

logically inferred from the data itself [10]. This will make

Infobright faster to execute the queries. The basic

framework of Infobright is shown in Fig.2

The top layer is Knowledge grid which contains sets

of knowledge nodes which are created at the time of initial

loading of data. The data grids consist of 64k data packs

aligned in traditional two-dimensional tables and the

storage grids are completely hidden from the end user

where the data persists. Depending upon the query and the

information in first two layers, the analytical engine will

first try to generate an acceptable answer by querying only

the knowledge nodes, after which more specific queries

can be posed, that will access the detailed data in the data

grids. Infobright will use character map to store common

strings with the vertical axis, and the frequency and

location of those strings will be stored down the horizontal

axis. When search on particular string is performed,

common string will be searched in the knowledge nodes

contain a significant number of those instances. Thus,

Infobright can rule out large portions of the database that

do not apply to the particular query. The distributed load

processor of Infobright enables the product’s rapid-fire

loading approach. As the knowledge nodes are stored

separately in the database, appended to their

corresponding data packs, they can be queried without

disturbing that data pack themselves. As inference and

compression processes are separate from the load process,

the lock times are minimized, which increases query speed

and overall performance.

Fig 2 Framework of Infobright

InfiniDB is a multi threaded column oriented

architected, make it more suitable for modern hardware

that is multi-CPU/core based [11]. It also uses a form of

logical horizontal range partitioning that does not require

special storage placement or schema design. Thus as

InfiniDB uses both vertical and logical-horizontal range

partitioning, the I/O is reduced in both directions (column

and row) and need of indexing is vanished. Other than the

architecture advantages , InfiniDB posses many other

database administrative advantages like superior

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Volume 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2505

concurrency, ACID-compliant transactional support

along with deadlock detection, crash recovery, multi-

version concurrency control, platform portability etc.

InfiniDB utilizes MySQL for its basic user interface

makes it easy to use for MySQL users [11].

 The performance of column oriented databases is

tested using famous ID3 algorithm. CAIM is a very

efficient discretization algorithm used as one of the

precious preprocessing task for classification. It has also

proven to be efficient online discretization for the tree

based classification [2]. Next section describes ID3

algorithm in brief with proposed rule based storage for the

classification model. The CAIM algorithm is also

discussed in brief in the following section.

III. DATA MINING ALGORITHMS

A. ID3 : A Tree Based Classification Algorithm

ID3 is a famous tree based classification algorithm [2].

We have implemented simple tree based classification

algorithm which uses Information gain as feature selection

criterion and model is stored in the rule based manner. The

process searches through the attributes of the training

instances and extracts the attribute that best separates the

given examples. If the attribute perfectly classifies the

training sets then the process stops; otherwise it

recursively operates on the n (where n = number of

possible values of an attribute) partitioned subsets to get

their "best" attribute. The algorithm uses a greedy search,

that is, it picks the best attribute and never looks back to

reconsider earlier choices. Simple ID3 is implemented for

the efficiency analysis of the different databases.

 The datasets are preprocessed to posses certain

qualities:

 Attribute-value is expected to be categorical

 Every instances of training/test dataset must have

predefined classes

 Class attribute must contain discrete values

 Since inductive generalization is used (i.e. not

provable) there must be enough cases to prepare

accurate classification model and to test the

validity of the model.

IV. PROPOSED RULE BASED STORAGE STRUCTURE FOR

THE CLASSIFICATION MODEL

 The rules generated using simple ID3 algorithm is

stored in the file. As large dataset will produce huge set of

rules, special storage structure is developed for the rule-

base to fasten the search process. The rules are stored with

suitable key which will guide the process for the next rule

to be followed. This direct access of the next applicable

rule will improve the test phase and the application phase

of the classification process. The rule is stored in the

following structure:

R: Feature Id(F), Feature value(V), N, Conclusion (C)

Will be read as : If F = V than C else goto next N line

Where N = -1 : No next possible rule available

 N >0 : Relative line number to be followed.

For example consider a database “ZOO” having 50

instances and logical attributes Egg, Tail, Aquatic,

Feathers, Breathes and Class. Sample rules generated

while running zoo using the simple ID3 algorithm are

listed below:

 Eggs NO 1 Mammal

 Eggs YES -1 Tail NO 3 Breathes YES 2 Aquatic NO

1 Insect

 Aquatic YES -1 Frog

 Breathes NO -1 Shellfish

 Tail YES -1 Feathers NO 1 Fish

 Feathers YES -1 Bird

As one of the characteristic of the attribute is to be a

categorical in nature, discretization is one of the important

preprocessing task, which convert the quantitative data in

to categorical data. We use CAIM discretization for our

implementation.

V. THE CAIM DISCRETIZATION CRITERION

 The Class Attribute Interdependency Maximization

(CAIM) criterion is a heuristic measure that is used to

quantify the interdependence between classes and the

discretized attribute. It measures the dependency between

the class variable C and the discretization variable D for

attribute F, for a frequency distribution (quanta matrix) as

shown in Figure 3, is defined as:

Where n is the number of intervals, r iterates through

all intervals, i.e., r = 1, 2, . . . , n, maxr is the maximum

value among all qir values (maximum value within the r
th

column of the quanta matrix), i = 1, 2, . . . , S, M+r is the

total number of continuous values of attribute F that are

within the interval (dr-1, dr] [5].

Class Interval
Class

Total

 [d0,d1] [dr-1,dr] …. [dn-1,dn]

C1 q11 ..,. q1r q1n M1+

:

Ci qi1 qir qin Mi+

:

Cr qs1 qsr qsn Ms+

Interval

Total
M+1 M+r M+s M

Fig.3 Quanta Matrix

n

M
FDCCAIM

n

r r

r
 
1

2
max

)|,(

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Volume 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2506

 The CAIM algorithm consists of these two steps:

 Initialization of the candidate interval boundaries

and the initial discretization scheme and

 Consecutive additions of a new boundary that

results in the locally highest value of the CAIM

criterion.

 Algorithm works in greedy manner. The discretization

schemes generate high class-attribute interdependency and

small number of discretization intervals.

VI. PERFORMANCE ANALYSIS

A. Tree Based Classification

 Execution of the simple tree based classification

algorithm is tested with Monetdb and Oracle11g. The

dataset used for the analysis are listed in Table 1 and Table

2 depicts the execution time of both databases. The dataset

are sourced from famous UCI machine learning repository

[12].

Table 1: Dataset specification for ID3 algorithm

Sr.No Data set
Number of

instances
Number of features

1 Zoo 50 17

2 Covtype 2,000 56

3 Covbig 10,000 56

Table 2: Execution time of the classification algorithm

Sr.No Dataset
Monetdb

(Seconds)

Oracle

(Seconds)

1 Zoo 5 1

2 Covtype 134 290

3 Covbig 2387 3324

 Table 2, depicts the outperforming results of the

algorithm with Monetdb compared to Oracle11g. For the

Dataset “Covtype” (2000 instances and 56 features)

Monetdb performance is almost two times faster compared

to that with Oracle11g. Another interesting observation of

Table 2 is for the dataset “zoo” (17 instances and 50

features). As smaller sized dataset needs less memory

swapping, Oracle11g gives outperforming results.

VII. CAIM DISCRETIZATION

 Execution of the CAIM algorithm is tested with

Monetdb, Infobright (Column oriented database) and

MySQL (Row oriented database) for different datasets.

Execution time for CAIM discretization of continuous

attributes of the datasets, described in Table 3 [12], is

depicted in Table 4. As quantitative features are required

to be discretized for the classification task, we will

emphasis them for our CAIM algorithm. The missing

values are replaced with mean values.

Table 3 Dataset specification for CAIM discretization analysis

Sr.

No
Data set

Total

instances

Total No.

of

Attributes

No. of

Quantitative

attributes

1 Iris 150 5 4

2
Forest

Cover
5,81,012 54 10 (2)

3
Dermatolo

gy
366 34 1

4
Credit

Rating
125 16 5

Table 4 Execution time of the CAIM algorithm

Sr.

No
Data set

Total CAIM discretization time

(ms)

MySQL Infobright MontDB

1 Iris 1327 1380 791

2
Forest

Cover
801024 792449 558296

3
Dermatolog

y
315 296 172

4
Credit

Rating
2591 2481 1563

The dataset “Forest Cover” is containing above 5.8

million instances, consumes more than 13 minutes in

MySQL which is far larger than that of Monetdb, that is

around 9.3 minutes. Here, Infobright executes the process

around 1 minute less than that of MySQL.

Fig 4: Execution Time comparison

From Figure 4, Monetdb is emerged to be faster

among the remaining three databases. The grid based

hierarchical storage structure of Infobright makes it slower

than Monetdb. The graphical analysis of the execution

time in Figure 4 depicts that for the large database with

more number of columns, the execution with column store

will be faster compared to row stores. In processing the

small datasets, as less I/O task needed for data transfer and

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Volume 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2507

data swapping, efficient CPU utilization will improve the

execution time of the whole process.

VIII. CONCLUSION

 In this paper, we attempted to describe the architecture

of three famous datasets Monetdb, Infobright and

InfiniDB. We compared the performance of Column

oriented database (Monetdb) with Row oriented database

(Oracle11g) using simple ID3: classification algorithms.

The outperforming results of column oriented data for DM

algorithms are encouraging. We also compared columned

stores with MySQL, another famous row oriented database

with the help of the very efficient discretization algorithm

CAIM. The results of Monetdb is outperforming among

other three databases, as the columned access for

individual attribute will be faster in columned databases.

The fast growing analytic applications and analytical DM

algorithms initiatives would be a columnar database

because of the faster response of the complex process,

which emphasis more on columned access rather than

whole row.

REFERENCES

1. H. Plattner, “A common database approach for OLTP and OLAP

using an in-memory column database,” in Proc. Of SIGMOD’09, pp. 1-2,
2009.

2. M. R. Lad, R. G. Mehta, D. P. Rana, “A Novel Tree Based

Classification,” IJESAT, Vol-2, pp. 581-586, 2012
3. M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M.

Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin,

N. Tran, and S. B. Zdonik. “C-Store: Column-oriented DBMS,” in Proc.
of VLDB, pp 553–564, 2005.

4. Abadi, D.J., Madden, S.R., and Ferreira, M.,” Integrating

compression and execution in column-oriented database systems,” in
Proc. of the ACM SIGMOD, pp 671-682 , 2006.

5. M. Zukowski, P. A. Boncz, N. Nes, and S. Heman. “Monetdb/X100 -

A DBMS In The CPU Cache,” IEEE Data Eng. Bull., vol. – 28, issue 2,
pp 17–22, 2005.

6. Abadi, D.J., Madden, S.R., and Hachem, N, “Column-stores vs. row-

stores: how different are they really?,” in Proc. of the ACM

SIGMOD’08,pp 967-980, 2008.

7. Harizopoulos, S., Liang, V., Abadi, D.J., and Madden S.

“Performance tradeoffs in read-optimized databases,” in the proc. of
VLDB, pp. 487-498,2006.

8. Daniel J. Abadi, Peter A. Boncz, Stavros Harizopoulos , “Column-

oriented Database Systems,” VLDB, tutorial, p.5, 2009
9. The MonetDB website , http://monetdb.cwi.nl

10. The Infobright website, ” http://www.infobright.com”

11. The InfiniDB website “http://www.infinidb.org”
12. The UCI machine learning repository, “http://cml.ics.uci.edu”

