
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2068

A Categorized Survey on Buffer Overflow

Countermeasures

Jisha S
1
, Diya Thomas

2
, Sangeetha Jamal

3

M. Tech Scholar, Department of Computer Science, Rajagiri School of Engineering and Technology, Kochi, India
 1

Asst. Professor, Department of Computer Science, Rajagiri School of Engineering and Technology, Kochi, India
 2,3

Abstract: Buffer overflow vulnerability is a fundamental cause for most of the cyber attacks such as server breaking-in,

worms, zombies, and botnets, since the attacker gets a capital control over a victim host. Many solutions to the buffer

overflow attacks have been proposed in the last decade. However, on a routine basis new buffer overflow vulnerabilities are

still discovered and reported. Since almost all existing solutions to the buffer overflow attack problem require significant

modification to the computing infrastructure in which network applications are developed or executed, and thus have met

considerable resistance in actual deployment. This paper is aimed to provide a categorized survey for the existing

countermeasures to buffer overflow attack. A categorized survey is necessary in this field because researchers have

proposed many software-based and hardware based countermeasures for buffer overflow exploits. These methods differ

from one another in the strength of protection provided, the effects on performance, and the easiness of deployment.

Finally, the paper compares the effectiveness, performance and limitations of the different category.

Keywords: Buffer overflow attack, Cyber security, Operating System, Computer Architecture

I. INTRODUCTION

The first well known exploit of buffer overflow vulnerability

is occurred in 1988 when the infamous Internet Worn

shutdown over 6,000 systems in just a few short hours,

exploiting gets() function call in the fingerd daemon process

[1]. Today also, the buffer overflow continues to be a

significant and prominent computer security concern.

Monitoring program helps computer systems from malicious

code injection attacks and to recover from soft errors. There

has been a lot of work on this area. However, most work

targets on individual problem only. Another solution used

for preventing buffer overflow attack is by compiler

extension. This include checking compiled binary for known

vulnerable functions, performs some data and control flow

analysis, and checking for correct boundaries. Operating

system based solutions declare stack as non executable and

hence prevent code execution. In hardware based solutions

illegal instructions and modifications are inspected. Defense

side obfuscation techniques allow some obfuscation to be

made on the host machine hence the attacker will be in great

trouble to obtain information specific to that machine.

Another method of prevention is to capture code running

symptoms and prevent code injection attack. This involves

identifying anomalous sequences of system calls executed

by programs.

The paper is organized as follows. Section II describes

buffer overflow attack. Categorization of the

countermeasures against buffer overflow attack is done in

section III. In section IV, we are performing a comparison of

the discussed methods in section III and section V concludes

the paper.

II. BUFFER OVERFLOW ATTACK

A buffer overflow occurs during program execution when

too much data copied into a fixed-size buffer. This causes

the data to overwrite the adjacent memory locations.

Depending on what is stored there, the behavior of the

program is changed. That results erroneous program

behavior, system crash, memory access errors etc. A buffer

is contiguous allocated memory. When the program is in

execution, the memory allotted for the program contain a set

of binary instructions to be executed by the processor; some

read-only data; global and static data for the program whose

scope is throughout the program execution.

 A Linux process memory layout is shown in fig.1.

The memory layout begins with program code and data. It

contains program instructions and initialized and

uninitialized static and global data; followed by a run time

heap. The run time heap is created by malloc/calloc; which

is followed by the user’s stack. When a function is called the

stack is used. A stack is a contiguous block of memory.

Whenever a function is called, its parameters return address,

and fame pointer (FP) is pushed in order onto the stack.

Stack grows from higher memory addresses to the lower

ones.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2069

Fig. 1. Memory layout of Linux program

Consider the following C program.

void foo (char *str) {

 char buf[15];

 strcpy (buf, str);

}

int main () {

char *str = "I am greater than 15 bytes"; // length of str = 27

//bytes

 foo (str);

}

This program shows unexpected behavior, because a string

(str) of 27 bytes has been copied to buffer that has been

allocated for only 15 bytes. The extra bytes overwrite the

space allocated for the FP, return address and so on. The

data used to overflow is often a string crafted by the attacker

which contains executable code and repetitions of the target

address which over write the return address. After

successfully modifying the return address the attacker is able

to execute instructions with the same privileges as that of the

attacked program.

III. CATEGORIZED COUNTERMEASURES

All paragraphs must be indented. All paragraphs must be

justified, i.e. both left-justified and right-justified.

A. Finding Bugs in the Source Code

In C program, there are lot of vulnerable library functions

which include: gets(), strcpy(), strcat(), sprintf(), vsprintf(),

fscanf(), sscanf(), vscanf(), vsscanf(), vfscanf(), realpath(),

getopt(), getpass(), streadd(), strecpy(), strtrns(),

syslog().The scanf () family of functions may also result in

buffer overflows. One way to try to avoid buffer overflow

vulnerabilities from software is to inspect the source code

and look for the vulnerabilities. This can be done by

manually looking at all the source files line by line, or by

using the UNIX grep command to look for vulnerable

library functions, such as strcpy or gets. Some of the

vulnerabilities are caught by this technique, but by no means

completely guarantees the safety of the resulting code.

Manual review will miss many buffer overflow

vulnerabilities due to the complex interactions of the

software (eg. Microsoft Windows). A certain code section

may look safe, but when one takes into account the different

interactions, it could be completely unsafe. Also, grep may

be able to find all instances of strcpy in the source code, but

it still requires a human to interpret its usage in the code to

tell if it can lead to a buffer overflow. In addition, functions

such as strcpy are not the only source of buffer overflow

vulnerabilities. Programmers, even careful ones, can

introduce new vulnerabilities with any kind of algorithm that

uses buffers.

 So while programming with C, take special care

when using the vulnerable function and it is best to use

strncpy(), strncat(), snprintf(), vsnprintf() instead of

vulnerable functions. Some solutions transform static buffers

to dynamically allocated heap-based buffers so that any

overflow to these buffers leads to a segmentation fault and

thus an exploit attempt can be find out. In Reference [2], a

code segment is generated to detect out of bound accesses

and when out of bound access occurs, instead of letting it to

corrupt the memory it is stored in a hash table, and whenever

the value is referenced they will provide the stored value

based on read address and allow the program to continue

execution instead of crashing/halting.

 In [3], a tool based on LCint is used. In this paper

they propose some new annotations- “ensures” and

“requires” through which programmers can state function’s

pre-conditions and post-conditions. And they are using

several constraints such as “minSet”, “maxSet”, “minRead”

and “maxRead”. These constraints describe the range of

buffers used in the program. When a function is called pre-

conditions and post-conditions are verified to ensure safe

access of buffers using the buffer range constraints. This

method requires the programmers to provide annotations and

protects such annotated functions.

 All the above methods provide a counter measure

for buffer overflow attack by looking the source code for

vulnerability.

B. Compiler Extensions

A buffer overflow prevention method proposed by [4] is

StackGuard. This is a compiler extension which places a

“canary” between local variables and the return address on

the stack. This canary is randomly generated when the

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2070

program begins to run. It is a 4 byte number. When a

function completes, before the control is transferred to the

return address which was on the stack, the canary is checked

with its original value. If the value does not match, then it

can be concluded that an attacker overflowed a buffer in the

function that just completed and the program will terminate.

This effectively detects when a buffer overflow occurs and

kills the process before it has a chance of executing the

attack code.

 Tzi-cker Chiueh et..al.(2001) are discussing a

method called RAD[5]. RAD is a patch to gcc-2.95.2 that

automatically adds protection code into the function

prologues and epilogues of the programs compiled by it. So

the source code does not need to be modified. This is a

compiler extension technique. By overflowing a return

address with a pointer to the injected code, attackers can

have the code executed with the attacked program’s

privilege. Return address defender (RAD) prevents this by

making a copy of the function return address in a particular

area of the data segment called Return Address Repository

(RAR). By setting neighboring regions around RAR as read-

only, we can defend RAR against any attempt to modify it

through overflowing. Given that RAR’s integrity is

guaranteed, each time when a return address of a stack frame

is used to jump back to the caller function, this address is

checked with the copy in RAR. A return address will be

treated as un-tampered and thus safe to use only if RAR also

contains the same address. In the paper they are proposing

two versions of RAD, MineZone RAD and Read-Only

RAD. Both these methods protect the return addresses stored

in RAR in two different ways. In MineZone RAD, they are

creating a C file, /hacker/global.c which is automatically

linked with programs compiled by RAD. This C file

contains all the function definitions and variable declarations

used in the new function prologues and epilogues. In

global.c they declare a global integer array which is divide it

into 3 parts as shown in fig. 2.

 The middle part of the global integer array is RAR,

which keeps a redundant copy of the return address of each

function call. The first and third parts, call mine zones, are

set as read-only areas by mprotect() system call. All

protection functionalities are implemented as instructions

added to the new function prologues and epilogues without

changing the stack frame layout of each function. Therefore

programs compiled by RAD are compatible with existing

libraries and other object files. In the new function prologue,

the first instruction executed is “pushing a copy of the

current return address into RAR.” Any attempt to overwrite

the RAR would cause a trap and is denied by the OS.

Fig. 2. Structure of RAR and MineZones

Read-Only RAD is similar to Mine-Zone RAD. It sets the

RAR itself as read-only to protect itself. The only time that it

becomes writable is in the function prologues when the

current return address is pushed into RAR. No external input

statements are there in the function prologue. To update

RAR in function prologue requires adding two extra system

calls to each function call, causing a serious performance

penalty.

Point Guard [6] is another compiler technique which

protects attacks against pointers. While the program is in

memory, the pointers are encrypted using pre-process XOR

key and when they are loaded into registers, they are

decrypted.

There are many techniques such as StackShield [7] which

have resemblance to the above discussed methods. All those

methods also include compiler modification for their counter

measure, so they can be included in this category.

C. Hardware Modifications

SmashGaurd [8] aimed to protect return address, is a

hardware solution against buffer overflow attacks. Here the

return address is stored in a hardware stack added to the

CPU. For each function call instruction the return address

and the stack frame pointer is pushed onto the hardware

stack. A return instruction pops the most recent pair of

address from the top of the hardware stack and compares it

with the return address. If any mismatch occurs, a hardware

exception is raised. In this approach, all reads and writes to

the hardware stack are done in hardware, through the

function call and return instructions. No other instruction is

permitted to read/write directly from or to the hardware

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2071

stack. Hence this method do not involve any changes to the

application code.

Reference [9], also discuss about a processor architecture

defense against buffer overflow attack. They also use a

secure return address stack, to provide a built-in dynamic

protection against return address corruption. This method

does not require any change to the application code.

D. Operating System based Solutions

A robust kernel based solution called AURORA [10] is

proposed to prevent control hijacking buffer overflow attack.

Control hijacking means overwriting control sensitive data

such as return address, function pointers and jumpbuf with

new address. The defense method includes blocking attack

traffic in the operating system kernel before attack traffic

destroys the address space of an attacked process. Then it

sends a socket close or end-of –file to the attacked process in

response to the service request and close the related

socket/file. The major component of AURORA is Memory

Area Observation Method (MAOM). Through this method

AURORA can understand whether the read/recv system call

inside kernel directly overwrite the return address or the

caller ebp field of the stack frame of any active function of

the process. For this MAOM use address of the input buffer

and length of the input string. However MAOM could not

detect indirect overflow [overflow occur to input buffer is

called direct overflow, otherwise it is called indirect

overflow] and direct overflow that overwrite a function

pointer. To detect these overflow signatures are used.

 For signature creation, AURORA use indispensable

properties and important properties of attack payload

elements. Indispensable property is the property that is

created to a successful attack. Important property is the

property that increases the chance of a successful attack.

Since signature is based on indispensable property and

important property, AURORA can detect zero-day control

hijacking buffer overflow attack.

E. Defence Side Obfuscation

Reference [11] describe a randomized instruction set

emulator (RISE) based on the open source Valgrind X86-to-

X86 binary translator. This technique obscures the machine

instruction set using a private randomized scrambling

mechanism. In order to put a successful binary code attack,

the attacker should obtain information specific to the

machine which is very hard to attain. The scrambling

function is designed in such a way that it is very hard to

create code sequences to perform a desired function (e.g.: an

attack), since it need a long secret key which is unique to

each program execution. Hence when binary attack code

comes to the system, it will appear as a random string of

bits. Source languages that are vulnerable to programming

error, local and trusted programs and machine runs mostly

local (trusted) programs are equally co-operative to

randomization strategy.

 The encryption scheme includes selecting a key of

length n bytes, where n is a parameter of the system. XOR

the key with the first n bytes of the machine code, and till

the executable is scrambled the operation is repeated. The

key is generated randomly for every new process. When

decoding, the byte to be decoded is XOR-ed with its

corresponding part (subkey) of the key. The subkey index in

the key is easily recovered from the instruction pointer (EIP)

by the operation, EIP (mod n). This allows memory that was

encoded linearly to be decoded correctly regardless of the

order of instruction execution, even if x86 instructions have

varying lengths.

F. Capturing Code Running Symptoms

This type of counter measure works by detecting whether

malicious program running on the system or not [12]. Based

on this, Ref. [13] proposed an effective protection against

large scale attacks. This approach consists of four phases

such as attack detection, input correlation, attack localization

and signature generation.

For the first phase- attack detection, a memory error exploit

protection technique-Address Space Randomization (ASR)

is used. ASR randomizes the location of various objects

(executable code, shared libraries, stack, heap, and static

data) in process address space. Thus, even though an

attacker can control the value of a pointer, he cannot confirm

that the pointer references a valid memory location being

used by the program. Most programs use only a small

fraction of the address space available to them; hence

probability of choosing a valid location is very small. So

dereferencing the pointer will lead to a memory exception

with a high probability. An attack is detected for such

memory exception which raises a segmentation fault, bus

error or illegal instruction signal and triggers the next phase.

 The second phase-input correlation uses a signal

handler. The signal handler can query the operating system

to identify the memory address that caused the exception,

and thus identify the value used to overwrite the pointer.

Then the system will identify the recent input string that

contains the value. If multiple matches are found, all of them

are marked as candidates for next step.

 After identifying the input that involved in the

attack, in the third phase-Attack localization in input- the

system map this input to a particular message type and/or

field and the signature will be based on this field.

 For signature generation a simple, light-weight rule

generation algorithm is used that exploits unique features of

buffer overflows. It considers all available benign input

samples to ensure none of these inputs will be filtered out.

The system also maintains certain summary statistics about

all benign inputs, which can be quickly compared with those

of malicious inputs when they are encountered.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2072

 A similar approach named ARBOR is proposed in

[14] where authors are tried develop a self healing system to

protect network server processes. An input filter is used in

this system which reject input that match with existing filter

rules. The rules generated by the analyzer are aimed to

capture characteristics of attack bearing input. Another

component is a behavioral model which is consulted by all

the components of ARBOR. The behavioral model is

constructed from the system calls and other relevant library

calls which are intercepted by another component called the

logger. The behavioral model provides the basis for filter

generation logic in the analyzer. It also provide services to

the input filter to carry out input tests. The logger is focusing

the library calls, since Zhenkai Liang et. al argues that the

library call interposition will cause only low overhead when

compared to system call interposition. The logger will

record sampled (to reduce overhead) subset of input events

used by the analyzer.

Fig. 3. Architecture of ARBOR

The detector uses address obfuscation to detect buffer

overflow attempt. When an attack occurs on the server

crashes which will trigger the feedback loop in ARBOR. If

the protected process is attacked, a notification is send to the

detector. Then the analyzer collects recent program behavior

from the logger. It also examines the recent inputs to the

attacked process. The analyzer is responsible for

synthesizing filter rules. For that it defines a threshold

depending on the size of input when the process was running

normally and allowable maximum size for the input. With

this concept analyzer synthesize a filter rule. This filter rule

will flag an attack if the input size is greater than the

threshold.

ARBOR also considers the program’s execution context of

input operation to identify attack. The relevant context

information include execution path taken by the program,

the content of runtime stack at the time of input operation,

parameters to the input operation etc. In this way ARBOR

prevent compromising with buffer overflow attack by

capturing the input behavior and program behavior.

VI.DISCUSSIONS

Inspecting the source code for bugs will helps to find out

program errors before the compilation. But this approach has

several disadvantages. This method need source code and for

many legacy applications, source code is not available. Only

small projects can be protected by this method.

RAD and StackGuard are considered approximately based

on same strategy. RAD uses RAR and StackGuard uses

canary words to prevent injected addresses from being used

as return addresses of function calls. The run time address

space of a program compiled by RAD contains two copies of

return addresses, one in the stack and one in RAR. Any

attempt to change return addresses in the stack will be

detected by RAD and result in the termination of the

program and the delivery of a warning message to root. RAR

is protected by system call mprotect().

In StackGuard, if the hacker can correctly guess the canary

value, the protection is not guaranteed. Here the solution is

to use random canary instead of a static canary value. The

attacker is also able to skip over the canary word and

overwrite the return address by using alignment requirement.

But MineZone RAD gives more protection here, because the

attacker must change both the return address in stack and

RAR.

StackGuard, ProPolice[15], Stack Shield [7], and RAD are

based on checking the integrity of return address before a

return, and hence the attack will be detected just before the

corrupted pointer is used by the program. With StackGhost,

PointGuard and ASR, detection occurs right after the

corrupted pointer is used.

AURORA does not need modification of the source code of

any application programs and also compatible with existing

operating systems and application programs; hence,

AURORA could work with other protection mechanisms to

provide an extra layer of protection. When an attack occurs,

the attacked process becomes idle because the processes

continue waiting for attackers’ input which has already been

blocked by a protection mechanism. A process crash occurs

due to the destruction of address space of an attacked

process. AURORA guarantees elimination of process

idleness and repeated process crashes.

Randomized instruction set emulation technique also

disrupts binary code injection attack without program

recompilation, linking. And also it does not need access to

program source code.

PointGuard rely on encrypting the vulnerable pointer with a

random XOR mask. As a result, when the overwritten

pointer is referenced, it leads to dereference of a random

location in memory, with a very high probability of causing

a memory fault.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2073

In ARBOR, generation of signature based on the complete

input may lead to increased false alarms. If signature

generation is based on the field, it will reduce the likelihood

of false matches with signatures; thereby minimize the

possibility of rejection of legitimate request. Also attacks

may be delivered through a sequence of small packets,

causing each input operation to return a small amount of

data. Thus matching operation will fail. And if the buffer

overflow attack is triggered by a field in the request, and not

the entire request. Then, the length of input is not a

characteristic of the attack. The comparison Table I. shows

the necessary changes that are needed for a counter measure

method.

IV. CONCLUSION

Buffer overflow attack will cause very serious problem,

unless we take effective countermeasure. In this paper we

have discussed different category of prevention method.

Each category has its own advantage and disadvantage. If

we are using category A, the source code should be available

at the defense side and for many legacy applications, source

code is not available. For category B, existing compiler for

applications should be modified. But this technique does not

need source code for their attack defense. Similar issues

arise with category C and category D. With category E, care

should be taken to minimize the process restart cost.

Category F suffers from significant run time overhead. But it

is more secure and economical if runtime overhead can be

reduced to an acceptable range. The majority of buffer

overflow attacks involve overwriting procedure return

address in the memory stack. So the best way to prevent

Buffer overflow attack is to enforce protection at the lower

level like instruction set randomization which will scrambles

the binary code at load time and unscrambles instruction-by-

instruction during instruction fetch and execute the

unscrambled code correctly. But this technique also got

some disadvantage. That is, when scrambling the bit

randomly, it will produce another legal instruction which is

executable. Hence with the already proposed methods there

are many issues. Due to severity of Buffer overflow attack,

the proposals of new solution which are simple to maintain;

transparent to existing hardware, Operating system and

application software; and economical are very important

necessity in the field of cyber security.

REFERENCES

[1] SANS Institute InfoSec Reading Room, http://www.sans.org

[2] Rinard M., A Dynamic Technique for Eliminating Buffer

Overflow Vulnerabilities and Other Memory Error, in 20th Annual
Computer Security Applications Conference. 2004, IEEE Computer

Security, pp. 82-90.

[3] Ganapathy V, Buffer Overrun Detection using Linear

Programming and Static Analysis, 10th ACM conference on Computer and

communications security 2003, ACM: Washington D.C., USA. pp. 345-

354.
[4] C.Cowan, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, Q. Zhang, Stackguard: Automatic Dectection and

Prevention of Buffer-overflow Attacks, In Proceedings of the 7th USENIX
Security Symposium, Jan. 1998.

[5] Tzi-cker Chiueh, Fu-Hau Hsu, RAD: A Compile-Time Solution

to Buffer Overflow Attacks, Proc. 21st Int’l Conf. Distributed Computing
Systems (ICDCS ’01), pp. 409-417, Apr. 2001.

[6] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, Pointguard:

Protecting Pointers from Buffer Overflow Vulnerabilities, Proc. 12th USENIX
Security Symp., pp. 91-104, Aug. 2003.
[7] Vendicator, StackShield: A ‘Stack Smashing’ Technique Protection

Tool for Linux, http://www.angelfire.com/sk/stackshield/ , Jan. 2001.

TABLE I

COMPARISON OF DIFFERENT COUNTERMEASURES

Methods
Source

Code

OS

Modification

Compiler

Extension

Hardware

Modification

Run time

Monitoring
Obfuscation

StackGuard No No Yes No No No

RAD No No Yes No No No

PointGuard No No Yes No No No

SmashGuard No No No Yes No No

Randomized

Instruction Set

Emulator

No No No No No Yes

ARBOR No No No No Yes No

AURORA No Yes No No No No

http://www.angelfire.com/sk/stackshield/

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2074

[8] Hilmi O. zdoganoglu, T.N. Vijaykumar, Carla E. Brodley, Benjamin A.
Kuperman, and Ankit Jalote, SmashGuard: A Hardware Solution to

Prevent Security Attacks on the Function Return Address, IEEE

Transactions On Computers, Vol. 55, No. 10, Oct. 2006.

[9] J.P.McGregor, D. K. Karig, Z. Shi, and R. B. Lee, A Processor

Architecture Ddefense against Buffer Overflow Attacks, In Proc. Int. Conf.

Inf. Technology Res. Edu., 2003, pp. 243–250.
[10] Li-Han Chen, Fu-Hau Hsu, Cheng-Hsien Huang, Chih-Wen Ou, Chia-

Jun Lin And Szu-Chi Liu, A Robust Kernel based Solution to Control-

Hijacking Buffer Overflow Attacks, Journal of Information Science and

Engineering, Vol. 27 No. 3, pp. 869 -890 May 2011.
[11] Barrantes, E. Ackley, D. Palmer, T. Stefanovic, D. Zovi, Randomized

Instruction Set Emulation to Disrupt Binary Code Injection Attacks, In

Proceedings of the 10th ACM conference on Computer and
communications security Oct. 2003.

[12] J. Rabek, R. Khazan, S. Lewandowski, R. Cunningham, Detection of

Injected, Dynamically Generated, and Obfuscated Malicious Code, In
Proceedings of the ACM workshop on Rapid Malcode, Oct. 2003.

[13] Linag, Sekar, Fast and Automated Generation of Attack Signatures: A

basis for Building Self-protecting Servers, In proc. 12th ACM Conference
on Computer and Communications Security 2005.

[14] Zhenkai Liang, R. Sekar, Daniel C. DuVarney, Automatic Synthesis of

Filters to Discard Buffer Overflow Attacks: A Step towards Realizing
Self-healing Systems, In Proceedings of USENIX Annual Technical

Conference,2005.

[15] H. Etoh, GCC Extension for Protecting Applications from Stack-
Smashing Attacks, IBM Research,

http://www.trl.ibm.com/projects/security/ssp/, Apr. 2003.
[16] CERT Coordination Center, http://www.cert.org

