
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 6, June 2013

Copyright to IJARCCE www.ijarcce.com 2378

Component Based System and Testing Techniques

Neelam Sirohi
1
, Anshu Parashar

2

Research Scholar, Department of CSE, H.C.T.M Kaithal, India
 1

Associate Professor, Department of CSE, H.C.T.M Kaithal, India
 2

Abstract: Today Component Based Software Engineering (CBSE) is more generalized approach for software development.

Component based software systems are developed from build in components or third party components. Hence the quality

of system depends on the quality of involved components. To ensure the quality of component based system testing is

necessary. In this paper we discuss component based software engineering and some testing techniques. We notice that

third party components include only specification or we can say that black box components. Due to black box nature of

components source codes are not available then to test the black box component is a very difficult task. That’s why several

testing techniques have been proposed by several authors for testing the component based systems. Some of them are

discussed by us in this paper.

Keywords: Component Based Software, GUI Component Testing, Testing Techniques, RCTM Framework

I. INTRODUCTION

 Component Based Software System (CBS) are mainly

constructed from reusable components such as third party

components and Commercial-Of-The-Shelf (COTS)

components. Due to this, component based systems are

developed quickly with minimum engineering efforts and

resource cost.

 Component Based Software Engineering covers many

software engineering disciplines and different techniques.

Many of them have been developed and successfully

implemented. CBSE has been successful in certain

engineering domains, such as office applications and

distributed internet-based applications but it is still in the

early stage of utilization in many other domains, in

particular those which have specific requirements on

different quality attributes [1].

 Component-Based Development (CBD) offers a radically

new approach to the design, construction, implementation

and evolution of software applications. Software

applications are assembled from components from a variety

of sources; the components may be written in several

different programming languages and run on several

different platforms or we can say that components are

heterogeneous in nature.

 To ensure the delivery of quality component based

software, effective and efficient testing is the key process in

software development. Component Based Software has

implementation transparency property and its frequent

heterogeneity raise some difficulties when the software is to

be tested. Since components are intended to be reused across

various products and product-families, components must be

tested adequately.

Graphical user interfaces (GUIs) are by far the most popular

means used to interact with today’s software. Most of the

software’s being used today is GUI based and the reliability

and robustness of the software depends on how each

component works as GUI is one of the most important

component so it needs to be tested for functional

correctness.

 The characteristics of the GUI are different from that of

conventional software as it is completely event based and

hierarchical in nature. So a different representation “event

forest” is created which is completely capable of simulating

the hierarchical nature of the GUI and also stores the event

interaction information.

 Most of the software’s today have GUI front-end and the

newer versions are released year by year. The newer

versions have modifications as compared to previous

version. So to test the modified GUI, regression testing is

performed which reuses the test cases from the old GUI.

 In this research we present component based software

system and some testing techniques, their advantages and

disadvantages addressed by the researchers. Next section

covers the component based software engineering. Section

III and IV covers the testing and testing techniques and then

section V is conclusion.

II. COMPONENT BASED SOFTWARE ENGINEERING

 Component Based Software Engineering represent a new

development paradigm: assembling software systems from

components .Today complex, high quality component based

system must be built in very short time period. This

mitigates towards a more organized approach to reuse.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 6, June 2013

Copyright to IJARCCE www.ijarcce.com 2379

 The component based software engineering is based on

the following principle: “Software reuse is the process of

creating software systems from existing software rather than

building them from scratch.” Today the trend in

computer-based products, such as cars and mobile phones, is

shorter and shorter lifecycles. As a consequence, time spent

on development of new products or new versions of a

product must be reduced. One solution to this emerging

problem is to reuse software design and solutions in new

versions of systems and products. Besides shortening

development time, properly handled reuse will also improve

the reliability since code is executed for longer time and in

different contexts. However, reuse is not trivial and puts

strong demands on development methods in order to be

successful. When applying reuse in development of real-

time systems, methods gets even more complex since both

functional behaviour and temporal behaviour must be

considered. Software systems are assembled from

components. Mainly three improvements in computer and

software-based systems can be expected by CBSE approach

to system development.

 Improvement of system quality

 Achievement of shorter time-to-market

 Improved management of increased complexity of

software

A. Component Based Software Development

 The development of Component-Based Systems

introduces fundamental changes in the way systems are

acquired, integrated, deployed and evolved. This approach is

based on the idea that software systems can be developed by

selecting appropriate off-the-shelf components and then

assembling them with well-defined software architecture.

This new approach is different from the traditional approach

in which the software systems can only be built from the

scratch. CBSE can reduce development cost and time to

market, and improve maintainability, reliability and overall

quality of the software systems. Even the life cycle of CBSD

is quite different from the traditional one. The following

figure shows the component being checked out from a

component repository and assembled into target software

component [2].

Fig.1 Component Selection Process

 Different steps in Component Based System Development

are [19]:

 Find components which may be used in system.

Many appropriate tools are available for finding these

components.

 Select the components which meet the

requirements.

 Alternatively create a proprietary component to be

used in the system. Components which includes core

functionality of the product are developed internally as they

should provide competitive advantage of the product.

 Adapt the selected component so that they suit the

existing component model or the specification of the

requirement. Some components can be directly integrated

into the system, some would be modified through

parameterization process, some would need wrapping code

for adaptation etc.

 Compose and deploy the components using a

framework for components.

 Replace earlier components with later versions of

the components to maintain the system. Later versions are

bug free and they include more functionality.

 The characteristics of the component-based development

are the following:

 Black-box reuse

 Reactive-control and component's granularity

 Using RAD (rapid application development) tools

 Contractually specified interfaces

 Introspection mechanism provided by the

component systems

B. Component Based System Architecture

 To ensure that a component based software system can run

properly and effectively the system architecture is the most

important factor. According to research community the

system architecture of the component based system should

be layered and modular. The top application layer is the one

supporting business. The second layer consist of components

engaged in only specific business , including components

used in more than one application , the third layer is cross

business middleware component consisting of common

software and interfaces to other established entities and the

lowest layer includes basic components that interfaces with

the underlying operating system and hardware[2].

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 6, June 2013

Copyright to IJARCCE www.ijarcce.com 2380

 Fig.2 Component Based System Architecture

C. Engineering Process

 The development cycle of the component based system is

different from the traditional one i.e. waterfall, iterative,

spiral etc. CBSE covers both component development and

system development with component. When developing

components other components can be incorporated but the

main emphasis is on reusability. A component must be well

specified, easy to understand, sufficiently general and easy

to deliver, easy to adapt deploy and replace. The components

interface must be as simple as possible and separated from

its implementation. Development with components is

focused on identification of reusable entities and relation

between them.

 The engineering process consist of the following steps:

 Find components (COTS and non COTS).

 Select the components that are most suitable to the

system.

 Create a composed solution that integrates the

selected components.

 Adapt the selected component so that they suit the

existing component model.

 Compose or deploy the product.

 Replace the old version or maintain COTS and non-

COTS parts of the system.

Fig.3 CBSD development cycle compared with waterfall

model.

 When the software is developed testing must be done to

make bug free software.

III. TESTING

 In the previous section we study the component based

software engineering and development process. Testing is

essential in the development of any software system. Testing

is required to assess a system’s functionality and quality of

operation in its final environment. This is especially of

importance for system being assembled from any self

contained software components. Basically testing is done to

reveal faults and after detecting failures, debugging

techniques are applied to isolate and remove faults [6].

A. Testability

 Software testability is how easily a computer program can

be tested or we can say it is the effort required to test a

program so that it performs its intended function. An ideal

testable software component is not only deployable and

executable, but also testable with the support of standardized

components' test facilities. Unlike normal components,

testable components have the following features.

 Testable components must be traceable.

 Testable components must have a set of built-in

interfaces to interact with a set of well-defined testing

facilities. This reduces the effort of tester to test the

component and helps in controlling the traceability of the

component.

 Although testable components have their distinct

functional features, data and interfaces, they must have a

well-defined test architecture model and built-in test

interfaces to support their interactions to component test

suites and a component test-bed.

B. Component testing vs module testing

 Module testing in traditional software environment,

software is divided into modules which are named and

addressable components and these are integrated to satisfy

the problem requirement. Modularity is a single attribute that

allows a program to be intellectually manageable. Once the

module has been created we are having its source code so it

must be tested to cover as many errors as possible. The goal

is to design the series of test cases that have high likelihood

of finding errors. These techniques provide systematic

guidance for designing test cases that:

 Exercise the internal logic of software module

 Exercise the input and output domain of the

program to uncover errors in program.

 Techniques likes Black Box and White box testing

can be applied.

 Component testing, Component is an independent unit

mostly made by third party and so called Commercial Off

the Shelf Components(COTS). So it does not have the

source code with it. Only specifications are available. So it is

very difficult to test the component or apply White box

testing. Some techniques have been proposed to test the

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 6, June 2013

Copyright to IJARCCE www.ijarcce.com 2381

components. These techniques are defined in next section i.e

testing techniques.

 It is difficult to exercise the internal logic of the

component.

 Black Box testing can be applied.

 White box testing can be applied only if some of

the specifications are available.

 Components are generally heterogeneous and made

in different languages.

C. Testing issues

 Testing issues are basically the factors which need to be

taken in account while testing the system. Some of the issues

in testing software component are as follows [8]:

 Redundant Testing during Integration of

Components

 Unavailability of Source Code

 Heterogeneity of Language, Platforms and

Architectures

 Monitoring and Control Mechanism in Distributed

Software Testing

 Deadlocks and Race Conditions

IV. TESTING TECHNIQUES

 Testing of component based system is different from

normal software testing that is why the testing techniques are

also bit different. There are basically two different

approaches for testing white box and Black box. The black

box testing is more prevalent in the component based

systems because in most of the cases the source code is not

available with the component; at most only the specification

is available.

Some of the techniques are:-

 Adequate testing

 Integrated testing technique.

 Automated software robustness testing.

 Boundary value analysis.

 Self testing of component based software.

 Object oriented component testing.

 Event flow model.

 Regression testing.

 Modular Regression Testing.

A. Adequate Testing

 An adequate testing approach for testing component based

software was suggested by David s.Rosenblum. This

technique provided the initial basis for testing of component

based software. The main result of this technique is formal

definition of the concept c-adequate –for p for adequate

unit testing of the component and the concept c-adequate-for

m for the adequate integration testing for the component

based system.

B. Integrated Testing Technique

 In integration testing technique relevant features of

component based software are tested and it allows more

rigorous testing. The basic constituent of this approach is

graphical representation combining black and white box

information from specification and implementation. The

graphical representation can then be used for test case
generation. In this technique specification of each

component is given as component state machine which are

special finite state machines which are similar to state

machines discussed in theory of computation. The abstract

states of the component are represented by circles and each

transition is represented as arrow leading from the source

state to its target state.

 These transitions are 5 tuples {source, target, event, guard,

action} where source and target are the starting and final

state, event causing transition, a predicate guard has to be

fulfilled before the transition can occur.

 After the component state machine for all the components

are constructed then the overall Component Based System

Flow Graph (CBSFG) is constructed which is the basis of

the testing technique. It visualizes information gathered from

both the source code and the specification. After the graph is

generated the structural techniques can be applied to

generate the test data. The test data for both the white box

and black box testing can be generated.

 CBSFG is a directed graph visualizing control and data

flow within a component based software, each method of the

software is represented by two sub graphs. One of these sub

graphs represents a control flow graph of the prototype and

the other represent flow graph generated on the basis of

source code. The sub graphs are interlinked by the control

and data edges which are namely:

 Intra-method control and data flow edges.

 Inter-method data and control flow edges.

 Specification implementation edges.

 This technique has one flaw that is very time consuming

approach and there is no provision of automatic test case

generation. Our next part shows the automatic test case

generation testing techniques.

C. Automated Software Robustness Testing

 The trend shifted towards automatic testing of software

components. Automated Software Robustness testing

approach is basically biased towards an automatic testing of

software component robustness. Robustness is defined as the

components ability to handle invalid input conditions. This

technique also focuses on how large number of test cases

can be generated from small number of test values. But there

is demand for reducing this large mass of test cases so

another technique that is static testing is introduced for test

case reduction. It reduces the number of test cases to be

executed without affecting test accuracy and reliability but it

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 6, June 2013

Copyright to IJARCCE www.ijarcce.com 2382

is unable to reduce the numbers of test case and to generate

test cases, human efficient expertise is needed.

D. Boundary Value Analysis

 In automated software regression testing, large number of

test cases are generated but the demand is to reduce the test

cases. Boundary value analysis is a methodology for

designing test cases that concentrates software testing effort

on cases near the limits of valid ranges. Boundary value

analysis is a method which refines equivalence partitioning.

In equivalence portioning input data is divided into equal

parts and then test cases are generated. Boundary value

analysis generates test cases that highlight errors better than

equivalence partitioning. The trick is to concentrate software

testing efforts at the extreme ends of the equivalence classes.

At those points when input values change from valid to

invalid errors are most likely to occur.

 ... -2 -1 0 1............ 12 13 14 15.....

 --------------|-------------------|---------------------

Invalid partition1 valid partition invalid partition 2

 Fig. 4

 Applying boundary value analysis we have to select a test

case at each side of the boundary between two partitions. In

the above example this would be 0 and 1 for the lower

boundary as well as 12 and 13 for the upper boundary.

E. Self Testing of Component Based Software

 This technique is widely accepted that conventional test

methods are not necessarily adequate for testing of

component based software. Also conventional test tools

cause same problem for the automation of the test

automation of CBS, because the knowledge about the

implementation of the CBS are essential to run the tests. The

component manufacturer on the other hand is not willing to

provide the component source code. This technique

introduces the framework for the automation of user oriented

component testing that significantly reduces the test cost and

it is based on black box testing and utilizes common features

of commercial capture / playback tools.

 The novelty of this approach is the framework that enables

automatic generation of test cases and test scripts without

involving domain knowledge and knowledge about object

code. However it also reveals a weakness, if the CBS is

changed, e.g., produce a new release, the test frame, i.e. the

test case, and consequently, the test script might become

obsolete. So component model needs to be automatically

updated.

F. Object Oriented Component Testing

 Another approach Object oriented testing has been

suggested by Fakhra jabeen et al. The unavailability of the

source code precludes extrapolating standard testing

approaches. In this technique object oriented component test

framework is proposed that relies on the utilization of

discrete descriptors to facilitate test execution and to enable

a uniform information flow. The component provider, user

and third party tester each have responsibility for descriptor

unique to their perspective, eliminating the dilemma of

missing testing information. It uses Component test

framework descriptor like component descriptor,

Component requirement descriptor, Component Test

specification descriptor. At present it supports component

unit testing and partial integration testing.

G. Event Flow Model

 Graphical user interfaces (GUIs) are the most popular

means used to interact with today's software. The functional

correctness of GUI is of utmost importance and is required

to ensure the safety, robustness and usability of an entire

software system. GUIs are hierarchical in nature. GUI

testing for functional correctness is a challenging research

area. One of the most common ways to achieve functional

correctness of GUIs is testing.
 Event flow model represent events and event interactions.

GUI is decomposed into a hierarchy of modal dialogues.

This hierarchy is represented as an integration tree; each

modal dialogue is represented as an event flow graph that

shows all possible event execution paths in dialogue.

 Event flow model is not tied to specific aspect of GUI

testing process. It may be used to perform a wide variety of

testing tasks by defining specialized model-based techniques

i.e event forest algorithm. Construction of event forest is

based on structure of GUI. Event forest structure

automatically generates various kinds of test cases covering

number of coverage criteria.

H. Regression Testing

 Regression testing is based on the change information or

change point. Due to lack of information about externally

developed component, system testers can’t perform effective

regression testing on their component based system.

Component users don’t know the details about the change in

component so they aren’t able to select the proper test case

to test the modified component. This technique provides a

regression testing method based on enhanced change

information of component version to test the software

component to test the software system containing modified

components. It needs a joint participation of the component

developer and the user. Call for graph is used to calculate the

change information. But this testing method needs to be

verified by experiments on the large scale and real

component based software systems.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 6, June 2013

Copyright to IJARCCE www.ijarcce.com 2383

I. Modular Regression Testing

 GUI regression testing is to be performed for every

modification; the continuous modification of GUI requires

that test cases be reusable across versions, as it would be too

expensive to generate new test cases for each version.
Modular regression testing provides an advantage over

regression testing. In this RTCM is used. RTCM reduces

this cost by providing the concept of reusability.

Regression Test Case Modeler (RTCM) is a framework that

generates the test cases automatically from event forest and

also generates regression test suite. RTCM focus on the

development of regression test suite from chosen old test

suite which represent correct input and is necessary to

validate the modified software. When the structure of the

original GUI is modified, test cases from the original GUI

are either usable or unusable on the modified GUI. Test

cases which can’t be used in modified GUI are discarded

and test cases which can be used in modified GUI are kept.

Test cases which can’t be rerun are known as obsolete test

cases. GUI test cases can be unusable, usable or repairable.

In RTCM we have followed the principle “do not throw

away unusable test cases”. The unrepairable and infeasible

test cases are discarded but repairable test cases are repaired

and reused. Regression Test Case Modeler capable of

constructing regression test suite form old original GUI test

suite file. Thus it will produce test case file for modified

GUI.

 Fig. 5 The RTCM framework

 The key component in the RTCM is regression test suite

modeler. It takes old test suite file and makes it reusable for

modified GUI. It can find out the unusable test cases, usable

test cases, infeasible test cases, repairable test cases,

unrepairable test cases as well as infeasible test cases.

V. CONCLUSION

 When a software system is developed then to ensure the

quality, reliability, robustness and functionality of system

testing is necessary. In this paper we study about component

based software engineering and some testing techniques.

Component based software engineering is still at its young

stage of life and there is much area for research in this field.

From our research we explore some testing techniques. In

our future work we will test the components with best one

testing tool.

 REFERENCES

[1] Jim Q Ning, “Component-Based Software Engineering”, Proceedings

of U.S National Institute of Standards and Technology’s Advance
Technology Program on Component Based Software, Document number 0-

8186-7940-9/97, 1997, pp. 34-43.

[2] Xia Cai, Michael R.Lyu, Kam-Fai Wong and Roy Ko, “Component-
Based Software Engineering: Technologies, Development Frameworks, and
Quality Assurance schemes”, IEEE Computer Society, 1530-1362/00, 2000, pp.372-379.

[3] Philip T Cox and Baoming Song, “A formal Model for Component-

Based Software”, IEEE Computer Society, Document number 07695-474-
4/01, 2001, pp.304-310.

[4] Alejandra Cechich and Mario Piattini-Velthuis, “Component-Based

Software Enginnering”, proceedings of The European Journal for the
Informatics Professional UPGRADE Vol. IV , No 4 , August 2003, pp.15-19.

[5] David S. Rosenblum, “Adequate Testing of Component-Based

Software”, Technical Report 97-34 Department of Information and
Computer Science University of California, Irvine, CA 92697-3425, 11 Aug 1997.

[6] Marcel Dix. Holger and D. Hofmann, “Automated Software

Robustness Testing”, proceedings of the 28 th Conference
(EUROMICRO’02) IEEE, Document number 1089-6503/02, 2002, pp.1-6.

[7] Jerry Gao, Ph.D, “Component Testability and Component Testing
Challenges”, San Jose State University, One Washington Square, San Jose, CA 95192-0180.
[8] Nitin V. Koppalkar, Seshaiah Uppala and Mahesh Madugundu,
“Testing of Component-Based Software Systems”, Philips Research India-Bangalore.
[9] Fu Lingyun, “An Approach for Component-Based Software

Development”, International Forum on Information Technology and
Application.2010,pp.22-25.

[10] Alan W.Brown, Kurt C.Walinau, “The Current State of CBSE”, In

Proceedings of IEEE Software, Document number 0740-7459/98,
September/ October 1998, pp. 37-46.

[11] Sami Beydeda and Volker Gruhn, “An Integrated testing Technique

for Component-Based Software”, IEEE Computer Society, 2001.
[12] S Phani Shashank et.al “A Systematic Literature Survey of Integration

Testing in Component-Based Software Engineering” , IEEE 2010.
[13] Bruce W. Weide, "Modular Regression Testing": Connections to

Component-Based Software, Dept. of Computer and Information Science,
The Ohio State University , 2015 eil Ave. Columbus, OH 43210,USA +1

614 292 1517, 2005.

[14] Fevzi Belli and Christof J. Budnik, “Towards Self-Testing of
Component-Based Software”, Proceeding of the 29th Annual International

Software and Applications Conference (COMPSAC ’05), IEEE, 2005.

[15] IEEE “Transactions on Software Engineering”, Proceedings of
Software Engineering Conference, 1999(APSEC ’99).

[16] Sami Beydeda and Volker Gruhn, “An Integrated testing Technique

for Component-Based Software”, IEEE Computer Society, 2001.
[17] Muthu Ramchandran, “Testing Software Components using

Boundary Value Analysis”, proceedings of the 29th EUROMICRO

conference New Waves in System Architecture” (EUROMICRO 08),
Document number 1089-6503/03, IEEE, 2003.

[18] Fakhra Jabeen, Muhammad jaffar-Ur Rehman, “A Framework for
Object oriented Component Testing”, Document number 0730-3157/05, IEEE press, 2005.
[19] Ivica crnkovic, “Component-Based Software Engineering – New

Challenges in Software development”, journal of computing and
Information Technology –CIT 11, 3,151-161, 2003, pp.151-160.

[20] A. M. Memon and M. L. Soffa, “Regression testing of GUIs”, in

Proceedings of the 9th European Software Engineering Conference (ESEC)
and 11th ACM SIGSOFT International Symposium on the Foundations of

Software Engineering (FSE-11), Sept 2003, pp. 118–127.

[21] Leonardo Mariani et.al “Compatibility and regression testing of
COTS-Component-based software” , IEEE 2007.

[22] Atif M. Memon, “An Event-flow Model of GUI-Based Applications

for Testing” Department of Computer Science University of Maryland,
College Park, MD 20742 , 2007.

New

GUI

Test

Case

File

Regression

Test

Suite

Modeler

Old GUI

Test Case

File

