
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2703

Heterogeneous Computing for Real-Time Stereo

Matching

A. AL-Marakeby
1
, M. Zaki

2

Systems and Computers Engineering Dept., Faculty of Engineering, Al-Azhar University, Cairo, Egypt
1,2

Abstract: Stereo matching is used in many computer vision applications such as 3D reconstruction, robot navigation,

robotic surgery, 3-D video surveillance, and tracking object in 3D space. Real time stereo matching is difficult due to the

heavy computation required for matching algorithms. In this paper a CPU/GPU heterogeneous computing platform is used

to accelerate the processing and run the system in real time. The availability of GPUs (Graphics Processing Units) with

hundreds of parallel processing cores, increases the speed of matching algorithms. In this work a combination between

feature based and area based matching techniques is used. Feature based matching is fast while area based is robust and the

used technique takes the advantages of the both. The stereo matching algorithms run over GeForce GPU and a real time

processing is achieved with speed up to 15 frames/sec.

Keywords: Parallel Processing, GPU, Stereo matching, Heterogeneous Computing.

I. INTRODUCTION

Stereo vision is the extraction of depth information from 2D

scenes. The stereo matching is to determine the pixels of the

same object point between left and right images [1]. Stereo

matching can be classified into two classes, edge-based and

area-based. The main difference between these two

categories is the nature of the reconstructed data. Edge-based

Stereo produces a sparse disparity map, while the area-based

stereo produces a dense disparity map [2]. The main

problem in stereo matching is the large time consumed in the

calculation of correspondence between points in the right

and left images. Many algorithms have been developed to

overcome the speed problem especially for real time

applications such as robot navigation. The reduction of the

search region in the stereo correspondence can increase the

performance of the matching process, in the context of the

execution time and the accuracy [6]. The addition of

geometric constraints and heuristics such as Uniqueness,

Projection, Back Projection, and Epipolar Constraints

increases the speed and accuracy of matching process [2].

For area based stereo matching, the selection of window size

affects both accuracy and speed. Adaptive window size

algorithms have been developed which give better

performances than fixed size window [7][4][3]. With all

these improvements the speed of the stereo matching is still

slow, and many applications require faster processing. The

spread of GPUs (Graphics Processing Units) which

originally designed to accelerate the graphics have attracted

researchers with their parallelism power. GPUs consists of

tens or hundreds of parallel processor cores with strong

floating point capabilities. Developing parallel stereo

matching on GPUs, gives very faster execution time than

sequential processing algorithms. Jedrzej et.al has used GPU

to implement a real-time stereo matching based on an

iterative refinement method for adaptive support-weight

correspondences [4]. Mikhail et.al has implemented the

stereo matching algorithm on CUDA platform available on

Nvidia GPUs based on a coarse-to-fine architecture[5]. In

this paper a combined technique has been used which use

both edge-based and area-based algorithms. An edge-based

scanning is applied to detect feature points, then a window

based search is used to detect the correspondence between

the two images. The system is implemented on NVIDIA

GPU using CUDA. This paper is organiezd as follow :

section 2: the stereo matching process, section 3: the

heterogeneous CPU/GPU architecture , section 4:

experiments and results, and section 5: the conclusion.

II. THE STEREO MATCHING PROCESS

The area based matching depends on selecting a window in

the reference image and searching for the best match

window in the second image. This search depends on some

correlation based match functions such as SSD and SAD. If

the color or intensity of this window is uniform, the

matching is inaccurate. In this application we don't need the

dense disparity map, but we search for matching the feature

points. Hence we used a combination of area-based and

feature-based techniques to overcome the fault matching

errors caused by uniform color windows. The proposed

algorithm consists of the following stages: feature

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2704

extraction , point selection, and window matching as shown

in fig.1.

Fig.1 Stereo matching stages

The feature extraction depends on edge information based

on some masks which detects corners and vertical lines. The

corners and vertical lines are useful information to increase

the accuracy of the matching process. The following masks

are used and the result of applying the feature extraction

process is shown in fig.2

𝑀1 =
−1 0 1
−1 0 1
−1 0 1

 , 𝑀2 =
 1 1 1
−1 −1 1
 0 −1 1

Fig.2 feature extraction

After the extraction of the features some points are selected

as feature points. The selection depends on a simple

threshold process for the number of vertical edges and

corners in a specified window. The matching process starts

by searching for the correspondent window in the second

image based on cost function as shown in fig.3. The SAD for

RGB colors is used as cost function as illustrated in the

following equation and detailed in [1]

Fig.3 Searching space for window matching

In fig.4 the selected feature points and the matching

process is illustrated.

Fig.4 feature points selection and matching process

III. HETEROGENEOUS CPU/GPU PLATFORM

The nature of algorithms parallelism in most of image

processing applications, makes the GPU a very effective tool

for increasing the speed of processing. The GPU consists of

hundreds of cores works in parallel as shown in fig.5 [9].

Fig.5 the CPU and GPU architectures

Heterogeneous computing divides the processing load

between CPU and GPU utilizing the power of the both.

Many parallel programming tools are developed to allow the

developers to program on parallel architecture isolating them

from many hardware details and memory problems. CUDA

is a software and hardware system which treats GPU as a

data parallel computing device. Program codes developed

on CUDA can be divided into two types in actual execution.

One is the host code which runs on CPU, and the other is the

device code which runs on GPU as shown in fig.6 [8].

Feature
Extraction

Point
Selection

Window
matching

Selected selected window search space

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2705

Fig.6 CUDA platform

To implement the proposed stereo matching algorithm on

the CUDA platform, the image is divided into small

windows.

A 2D grid is used with a size proportional to the image

dimensions where

𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 = (
𝐼𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡 ℎ + 𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒 − 1

𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒

,
𝐼𝑚𝑎𝑔𝑒ℎ + 𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒 − 1

𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒

)

And the grid is divided into 2D blocks with the same size

of window size. These blocks run on parallel and the

processed window coordinates is given by
𝑊𝑖𝑛𝑑𝑜𝑤𝑥 = 𝐵𝑙𝑜𝑐𝑘𝐼𝐷𝑥 ∗ 𝐵𝑙𝑜𝑐𝐷𝑖𝑚𝑥 + 𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷𝑥
𝑊𝑖𝑛𝑑𝑜𝑤𝑦 = 𝐵𝑙𝑜𝑐𝑘𝐼𝐷𝑦 ∗ 𝐵𝑙𝑜𝑐𝐷𝑖𝑚𝑦 + 𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷𝑦

IV. EXPERIMENTS AND RESULTS

The NVIDIA GeForce 610M GPU is used for the

implementation of the stereo matching algorithm. This

graphics processing unit consists of 48 cores and 1 GB

memory. The initialization of the system, and memory

transfer is executed on the CPU, while feature extraction and

matching process is executed on GPU as described in section

2. Different window sizes and search spaces values have

been used to test the speed of the algorithm. Table 1

illustrate the measured speed and the effect of different

parameters on this speed.

Table.1 matching speed

Image

size

Window

size

Search

space

Speed

frames/sec
280 X 240 8 X 8 30 pixel 15
280 X 240 8 X 8 40 pixel 11
280 X 240 10 X 10 30 pixel 10
280 X 240 10 X 10 40 pixel 8

V. CONCLUSION

The speed of real time stereo matching process is increased

and improved using the parallel GPU. The combination of

area-based and feature-based stereo techniques increase the

accuracy of stereo matching. CUDA platform is an efficient

parallel programming tool which isolate the developer from

hardware details and facilitate the utilization of parallel

capabilities.

REFERENCES

[1] Chang-Il Kim,Soon-Yong Park, “Fast Stereo Matching of Feature

Links” , International Conference on 3D Imaging, Modeling,

Processing, Visualization and Transmission 2011.
[2] Elsayed E. Hemaycd Michacl S. Hrown, Aly A. Farag, W. Brent

Scalos, "Cooperative Stereo: Combining Edge- and Area-Based

Stereo" Aerospace Conference,. Proceedings. IEEE , 1999
[3] Jargalsaikhan Iveel and Sumam David, SMIEEE “A novel adaptive

support window based stereo matching algorithm for 3D

reconstruction from 2D images”, 11th International Conference on

ITS Telecommnincation 2011.

[4] Jedrzej Kowalczuk, , Eric T. Psota, , and Lance C. P´erez, “Real-

Time Stereo Matching on CUDA Using an Iterative Refinement
Method for Adaptive Support-Weight Correspondences“ IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, VOL. 23, NO. 1, JANUARY 2013

[5] Mikhail Sizintsev, Sujit Kuthirummal, Supun Samarasekera, Rakesh

Kumar ,"GPU Accelerated Realtime Stereo for Augmented Reality",
International Symposium 3D Data Processing, Visualization, and
Transmission 2010.

[6] Payman Moallem, Karim Faez, "FAST EDGE-BASED STEREO

MATCHING ALGORITHM BASED ON SEARCH SPACE
REDUCTION"

[7] Yingyun Yang, Huabing Wang, Bo Liu," A New Stereo Matching

Algorithm Based on Adaptive Window" International Conference on
Systems and Informatics (ICSAI 2012).

[8] Yu Liu , Longjiang Guo, Jinbao Li, Meirui Ren, and Keqin Li,

"Parallel Algorithms for Approximate String Matching with 𝑘
Mismatches on CUDA , IEEE 26th International Parallel and

Distributed Processing Symposium Workshops & PhD Forum 2012

[9] CUDA programming guide , http://docs.nvidia.com/cuda/cuda-c-
programming-guide/

BIOGRAPHY

Ashraf Al-Marakeby has received BSc in Systems and

Computer Engineering from Al-Azhar University at

1999 MSc from the same university at 2004. He has

received PhD as a channel between Mie University and

Al-Azhar University in 2008. He is interested in image

processing, computer vision, character recognition and

Embedded systems.

M. Zaki is the professor of software engineering,

Computer and System Engineering Department,

Faculty of Engineering, Al-Azhar University at Cairo.

He received his B.Sc. and M.Sc. degrees in electrical

engineering from Cairo University in 1968 and 1973

respectively. He received his Ph. D. degrees in

computer engineering from Warsaw Technical University, Poland in

1977. His fields of interest include artificial intelligence, soft

computing, and distributed systems.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6411
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

