

International Journal of Advanced Research in Computer and Communication Engineering Vol. 2. Issue 7. July 2013

Predictive Location-Based QoS Routing with Admission Control in Mobile Ad-hoc Networks to improve QoS

Mr. M. V. Yadav¹, Prof. G. T. Chavan²

¹PG student, Pune University, Pune, INDIA

² Associate Professors, Pune University, Pune, INDIA

Abstract: The aim of this paper is identifying the issues and challenges involved in providing QoS in MANETs, overcoming these issues by using predictive location based QoS routing with admission control which are required to ensure high levels of QoS, improving bandwidth, throughput and minimizing packet loss rate, end to end delay, jitter, throughput QoS metrics. Distributed Admission Control Mechanism (DACME) applies on the valid route to check whether that route satisfies QoS or not if it satisfies QoS requirement then only route is selected otherwise rejected. The aim here is to improve peer to peer communication in wireless mobile ad hoc networks by identifying the location of mobile node using Predictive Location Based QoS Routing Protocol (PLQRP) and Admission Control mechanism. This project can adapt to applications with bandwidth, delay and jitter constraints .This paper proposes optimizations based on interactions between routing, and admission control layers which offer important performance improvements.

Keywords: Quality of Service (QoS), Predictive Location Based QoS Routing Protocol (PLQRP), Distributed Admission Control Mechanism (DACME), Medium Access Control (MAC), QoS Specification (QSPEC).

I. INTRODUCTION

The main goal of QoS provisioning is to achieve a more networks requires considering the reasons for link failure to deterministic network behavior, so that information carried by the network can be better delivered and network resources are better utilized. QoS routing is a routing mechanism under which paths are generated based on some knowledge of the quality of network, and then selected according to the quality of service requirements of flows. The network services can be characterized by a pre specified services requirements such as maximum delay, maximum delay variance (jitter), mini-mum bandwidth and maximum packet loss rate etc. The current ad hoc networks (MANETs) are not able to satisfy the requirements of quality of service (QoS). In Ad-hoc networks, the routing phase plays an important role for improving Quality of Services. There are some challenges faced while providing QoS in MANET due to dynamic network topology, network flow stops receiving QoS provisions due to path breaks so new path must be established, causing data loss and delays. Again link state changes continuously and flow states change over time. There is no central control in Mobile Ad-hoc NETwork. Limited resource availability in ad-hoc network in terms of Bandwidth, battery life, storage, processing capabilities etc. are the challenges in ad-hoc network so these challenges should resolved by applying proposed mechanism.

II. MOTIVATION

Routing in MANET experiences link failure more often. Hence, a routing protocol that supports QoS for ad hoc

Copyright to IJARCCE

improve its performance. Link failure stems from node mobility and lack of the network resources. Therefore it is essential to capture characteristics to identify the quality of links. The routing protocols must be adaptive to cope with the time-varying low-capacity resources. For instance, it is possible that a route that was earlier found to meet certain QoS requirements no longer does so due to the dynamic nature of the topology. In such a case, it is important that the network intelligently adapts the session to its new and changed conditions.

III. RELATED WORK

The MANET is composed of hosts that communicate each other over a shared wireless medium. Routes are mostly multi-hop, because of limited radio propagation range. Neighbour nodes share the radio transmission channel with limited bandwidth. The network topology can change during operation then Determining and maintaining the network topology in a distributed fashion is a most challenging problem.

The goal of the QoS-aware routing protocols is to determine a path from a source to the destination that satisfies the needs of the desired QoS. The QoS-aware path is determined within the constraints of bandwidth, minimal search, distance, and traffic conditions. Since path selection is based on the desired QoS, the routing protocol can be termed QoS-aware. QoS aware routing protocols like Core www.ijarcce.com 2803

International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 7, July 2013

Extraction Distributed Ad Hoc Routing (CEDAR), Step 9: If location routing executes based on receiving signal Multipath Routing Protocol (MRP), QoS Multicast Routing strength get proper x and y location then compute distance Protocol with Dynamic group topology (QMRPD), Ad hoc QoS on-demand routing (AQOR) are available.

IV. PROGRAMMING DESIGN

Let us consider architectural design of PLQRP with admission control system.

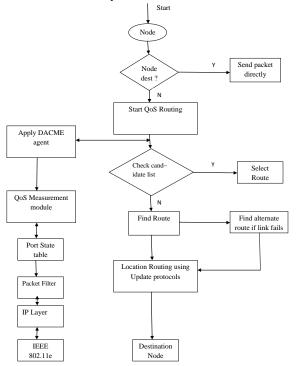


Fig 1. Design Flow Diagram

Algorithm used for PLQRP with admission control in **MANET :**

Step 1: Generate topology

Step 2: Start flooding information

Each nodes uses 802.11e mac to access channel

A: for every link/node do

B: Exchange neighbor Nodes information.

C: end for

D: send neighbor node information to the gateway

Step 3: Select source node.

Step 4: Establish path from source to destination

Step 5: Start packet transmission.

Step 6: If packet received by node is destination then directly send packet to destination

Step 7: Else qos routing needs to be done

Step 8: In gos routing check candidate nodes from routing table to reach destination else find route from source, nodes receives this message store the sender info and update delay between two nodes.

Copyright to IJARCCE

between two nodes and based on coverage also stability and delay between two nodes.

Step 10: It will check four parameters for gos power, range, delay and stability if it matches, update current sequence number else drop the packet.

Step 11: Then destination will send route reply, source receives this reply and start to send data packets.

Step 12: In routing table if next hop node entry not available to reach destination or link failure occurred during data transmission remove node entry in routing table and find alternate next hop to reach destination.

Step 13: When searching route or alternate route use probe packet for end to end path qos measurements in MANET for gos, DACME agent need to run. Here the gos specification is bandwidth, delay, jitter, packet delay ratio and throughput. Step 14: The application should register with DACME Agent to get benefit with source and destination IP and port address.

Step 15: If this requirement does not meet, DACME will notify this if it is success means DACME agent will do periodic path probing between source to destination to meet the qos metric bandwidth, delay, jitter, packet delivery ratio and throughput.

Step 16: Once the destination receives probe packet it will update statistic table about source at current period then send reply to DACME agent and this agent update BW, delay, jitter and packet delivery ratio.

Step 17: Then DACME agent decides to accept the connection or reject or preserve packet filtering used by all nodes to block the traffic if it is not accepted by the qos measurement.

Step 18: Stop.

PLORP routing with admission control in MANET has following different modules,

I Location Predictions

There are two types of updates:

1. Type 1 update: A type 1 update is generated periodically. It can be generated with a constant frequency, i.e. the time between successive type 1 updates remains constant. Alternatively, the frequency of the type 1 update can vary linearly between a maximum (f_{max}) and a minimum (f_{min}) threshold, with the velocity v of the node. Consequently, the distance travelled between successive type 1 updates remains constant. This function is illustrated in Figure 2

International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 7, July 2013

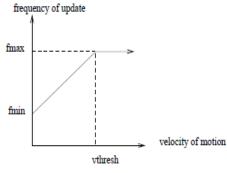


Figure 2. Types 1 update protocol [8]

The update protocol is crucial for distribution of geographical location and resource information. Here consider resources such as battery power, queuing space, processor speed, transmission range, etc.

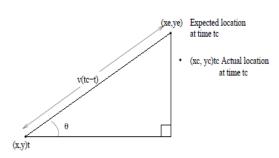


Figure 3. Type 2 update protocol [8]

2. Type 2 update: A type 2 update is generated when there is a considerable change in the node's velocity or direction of motion. From its recent history (i.e. from recent updates), the mobile node can calculate an expected location that it should be in at a particular instant. The node then periodically checks if it has deviated a distance greater than δ from this expected location. If it has deviated more than a distance δ from its expected location, a type 2 update is generated.

Then, expected location (x_e, y_e) is given by the equations:

$$\mathbf{x}_{\mathbf{e}} = \mathbf{x} + \mathbf{v} \cdot (\mathbf{t}_{\mathbf{e}} - \mathbf{t}) \operatorname{Cos} \boldsymbol{\theta} \tag{1}$$

 $y_e = y + v.(t_e - t) \sin \theta$ (2)

If $[(x_e-x_c)^2+(y_e-y_c)^2]^{1/2} > \delta$, then a type 2 update due to significant change in the pattern of motion is generated at the time of checking, i.e. care is taken to see that δ is large enough to prevent the reporting of minor perturbations in direction. Predictions:

When a packet arrives at a node 'a' to be routed to a particular destination 'b', 'a' has to follow a two step process to forward the packet along. The first step is to predict the geographic location of the destination 'b' as well as the candidate next hop nodes, at the instant when this packet will reach the respective nodes. Hence, this step involves a location as well as propagation delay prediction. The location prediction is used to determine the geographical location of some node (either an intermediate

Copyright to IJARCCE

node or the destination b) at a particular instant of time tp in the future when the packet reaches it. The propagation delay is used to estimate the value of t_p used in the above location prediction. These predictions are performed based on previous updates of the respective nodes. The second step is to perform QoS routing based on the information, determined in the first step.

I. Location Prediction: Assume that a node moves in a piecewise linear pattern. In other words, assume that between successive update points, the node has moved in a straight line. For a piecewise linear motion pattern and update packets that do not contain direction information, two previous updates are sufficient to predict a future location of the mobile node in the plane.

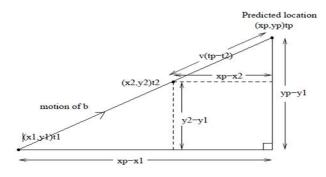


Figure 4. Prediction of future location [8]

Let (x_1, y_1) at t_1 and (x_2, y_2) at t_2 $(t_2>t_1)$ be the latest two updates respectively from a destination node 'b' to a particular correspondent node 'a'. Let the second update also indicate v to be the velocity of b at (x_2, y_2) . Assume that a wishes to predict the location (x_p, y_p) of 'b' at some instant t_p in the future. The value of t_p is set by a to current time plus predicted delay for the packet to reach b from a.

From Figure 4, using similarity of triangles:

$$(y_2 - y_1) / (y_p - y_1) = (x_2 - x_1) / (x_p - x_1)$$
 (3)
Solving for yn from the above equation

$$y_p = y_1 + (x_p - x_1) (y_2 - y_1) / (x_2 - x_1)$$
Using the above equation, a can calculate vn if it knows vn

Using the above equation, a can calculate yp if it knows xp,

this in turn can be calculated as follows. Using similarity of triangles again getting:

$$y_{p} - y_{2} = (y_{2} - y_{1}) (x_{p} - x_{2}) / (x_{2} - x_{1})$$
(5)

Also, using Pythagoras' theorem,

$$(x_p-x_2)^2 + (y_p-y_2)^2 = v^2 (t_p - t_2)^2$$
 (6)

Substituting for yp - y2 from Equation 5 in the above and solving

for xp, get x_p:

$$x_p = x_2 + [(v (t_p - t_2) (x_2 - x_1)) / [(x_2 - x_1)^2 + (y_2 - y_1)^2]^{1/2}]$$
 (7)

II QoS Routing

Here algorithm is given for QoS routing and admission control is applied on valid route. Global stack

www.ijarcce.com

International Journal of Advanced Research in Computer and Communication Engineering Vol. 2. Issue 7. July 2013

/* Here assume function compute_cl which performs (QSPEC), stating the requested bandwidth, delay, jitter, location-delay prediction and distributed admission control for each node in the source's proximity list to obtain a list of candidate next hops. */

proc OoS routing(src.dest.<qos requirements>) if valid routes={}; candlist = (src,<qos_requirements>) if candlist!= { } then if dest € candlist then Directly forward packet to destination; else foreach c € candlist do stack = $\{\};$ push (stack,c); apply DACME agent while searching route find route(c,dest,<qos requirements>) do complete if complete if complete if valid_routes = { } then No route, reject connection; else Output shortest distance route from valid routes ; if complete proc find_route(start,dest,<qos_requirements>) cand_list = compute_cl (start,<qos_requirements>); if cand_list != { } then foreach n € cand list do if $n \neq stack$ then push (stack,n) if n=dest then validroutes:=validroutes U stack: else find route(n,dest,<qosrequirements>);fi pop(stack); if complete do complete if complete Figure 5 QoS Routing Algorithm

III Distributed Admission Control Mechanism (DACME)

It is recommended that all radio interfaces are IEEE 802.11e enabled in order to operate under optimal conditions in IEEE 802.11 based MANETs. In terms of the software required for MANET nodes, the sources and destinations of OoS flows must have a DACME agent [7] running. The rest of the nodes will simply treat DACME packets as regular data packets, being unaware of the mechanism itself.

The main elements of DACME are the OoS measurement module and the packet filter. The QoS measurement module is responsible for assessing QoS parameters on an end-toend path, while the packet filter blocks all traffic that is not accepted into the MANET according to these end-to-end measurements. An application that wishes to benefit from DACME must register itself with the DACME agent, indicating the desired destination IP address and the source and destination UDP ports, along with a QoS specification

Copyright to IJARCCE

packet delay ratio and throughput: (BR, DR, JR, PDR, Th). DACME will notify this event to the application, if any among the available bandwidth, the end-to-end delay, jitter or PDR values does not meet the application's requirements.

Once registration is successfully completed, the OoS measurement module is activated; it will periodically perform path probing between the source and destination. The purpose is to assess if the path can meet the QoS requirements (QSPEC), which may be defined in terms of end-to-end bandwidth, delay, jitter, PDR and throughput. The destination agent, upon receiving probe packets, will update the destination statistics table where it keeps persource information of the packets received during the current probing period. After receiving the last packet of a probe (or if a timeout is triggered), the destination agent will send a reply back to the source DACME agent. The QoS measurement module, upon receiving each probe reply, will update the state of the path using per-connection bandwidth, delay, and jitter flags. Once enough information is gathered, it checks all the registered connections towards that destination, and then decides whether a connection should be accepted, preserved, or rejected, updating the Port state table accordingly. QoS support becomes effective when the packet filter module, according to the port state table, interacts with the IP layer by configuring the TOS header field of packets pertaining to accepted data flows. The IEEE 802.11e MAC must then map the service type defined in the IP TOS packet header field to one of the four MAC access categories that it makes available.

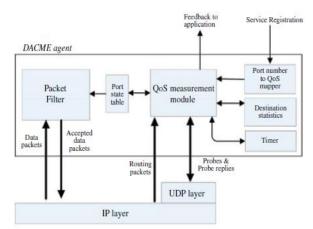


Figure 6. Functional block diagram of the DACME agent. [7]

IV Comparison of graphs between PLQRP without location routing and PLQRP with location aware routing and admission control

In this module graphs are generated which proves that this newly designed system gives better results along with improved quality of service in MANET.

International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 7, July 2013

V. SIMULATION RESULT

Following graphs shows that by using PLQRP with admission control in MANET improves the results in terms of delay, jitter, PDR and throughput. In simulation five scenarios are considered as 30, 50, 70, 80 and 100 nodes, and from result following graphs are generated which clearly proves that applying DACME along with location prediction gives better throughput and require less delay, jitter.

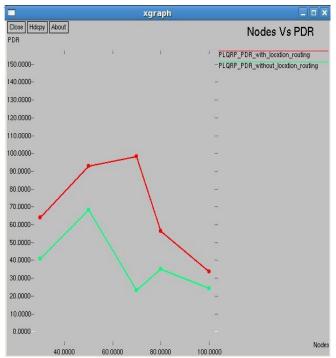


FIG 7. Nodes Vs PDR

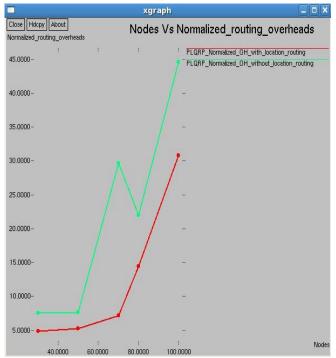


Fig 8. Nodes Vs normalized routing overhead

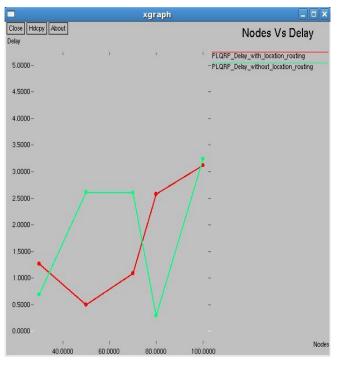


FIG 9. Nodes Vs Delay

International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 7, July 2013

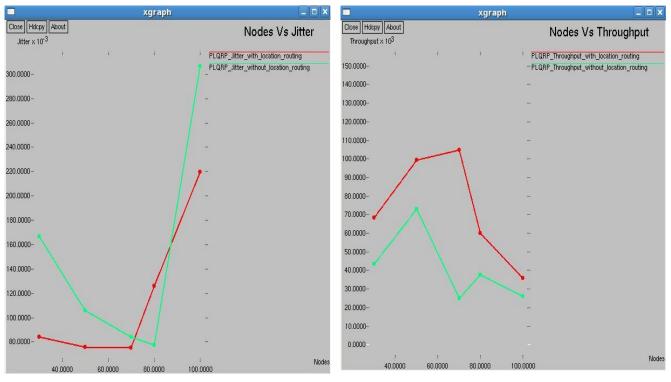


FIG 10. Nodes Vs Jitter

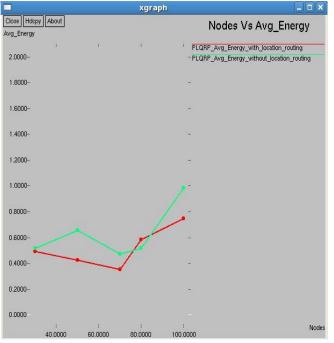


FIG 11. Nodes Vs Avg Energy

VI. CONCLUSION

Simulation result shows that PLQRP with location routing by applying admission control delivers more packets and gives maximum throughput as compare to PLQRP without location routing.

Packet delivery ratio, throughput is highly increased when location of a mobile node is considered as compare to PLQRP without location routing. End to end delay, jitter, packet dropping ratio is significantly reduced in PLQRP with location routing scenario. As the number of nodes increased, PLQRP without location routing gives lower end to end delay as compare to PLQRP with location routing.

ACKNOWLEDGMENT

I thanks to my guide Prof. Mr. Chavan G. T. who has guided me throughout the semester.

References

[1]. A. Boomarani Malany et. al., "Throughput and Delay Comparison of MANET Routing Protocols", Int. J. Open Problems Compt. Math., Vol. 2, No. 3, September 2009 ISSN 1998-6262, 2009, www.icsrs.org.

[2]. C. R. Lin and J. S. Liu, "QoS Routing in Ad-Hoc Wireless Networks.", IEEE Journal On Selected Areas In Communications, Vol.17, No.8, pages 1426-1438, August 2009.

[3]. G. Santhi and Alamelu Nachiappan, "A Survey of QoS Routing Protocols for Mobile Ad Hoc Networks", International journal of computer science & information Technology (IJCSIT) Vol.2, No.4, Au-gust 2010.

 [4]. JooSang Youn, Sangheon Pack and Yong-Geun Hong, "
 Distributed admission control protocol for end-to- end QoS assurance in ad hoc wireless net-works ", youn et al. EURASIP Journal on Wireless www.ijarcce.com
 2808

Copyright to IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 7, July 2013

Communications and Networking 2011, 2011:163.

[5]. L Hanzo II and R. Tafazolli, "Admission Control Schemes for 802.11-Based Multi-Hop Mobile Ad Hoc Networks: A Survey", IEEE Comm. Surveys and Tu-torials, vol. 11, no. 4, pp. 78-108, Oct.- Dec 2009.
[6]. L. Hanzo II and R. Tafazolli, "A survey of QoS Routing Solutions for Mobile Ad Hoc Networks", IEEE comm., vol 9, no. 2, 2nd MAY 2007.

[7]. L. Hanzo II and R. Tafazolli, "QoS-Aware Routing and Admission Control in Shadow-Fading Environments for Multirate MANETs", Wiley J. Wireless Comm. and Mobile Computing, vol 10,no.5, May. 2011.

[8]. M. P. Malumbres, C. T. Calafate, "QoS Support in MANETs: A Modular Architecture Based on the IEEE 802.11e Technology", IEEE Transaction on Circuits and systems, vol. 19, NO. 5, MAY 2009.

[9]. Samarth H. Shah, Klara Nahrstedt, "Predictive Location Based QoS Routing in Mobile Ad Hoc Net-works", Department of Computer Science University of Illinois at Urbana-Champaign Urbana, IL 61801, U.S.A, 2002.

[10]. Y. Yang and R. Kravets, "Contention-Aware Admission Control for Ad Hoc Networks", IEEE Trans. Mo-bile Computing, vol. 4, no. 4, pp. 363-377, July/Aug. 2005.

BIOGRAPHY

Mangesh Yadav is currently pursuing his ME in computer network in Sinhgad College of Engineering and he is in final semester of his course..His interests lies in the field of computer networks, MANET and continues his research in these areas.

G. T. Chavan is currently working in Sinhgad College of engineering as an associate professor under the department of computer engineering. He has published journals on Issues related to QoS routing for Adaptive protocol of MANET and also have attended various national and international conferences. His interest lies in the field of Computer Networks, QoS in MANET.