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Abstract: After frame synchronization, individual measurands are identified according to the frame location. The 

decommutator identifies and extracts embedded asynchronous data stream (EADS) words. Thus PCM Decommutator is a 

very crucial subsystem in the satellite data acquisition unit of satellite ground station. A PCM decommutator is designed and 

implemented on a Stratix FPGA. The Hardware design comprises of four modules. a) Decommutator b) FPGA on chip 

memory bank c) Data storage on external FIFO banks d) PCI-X Master IP core integrated on the same FPGA. Decommutator 

will identify and separate the individual parameters from the incoming satellite PCM stream. M4k memory of the Stratix is 

used to develop a FPGA on chip Memory module to temporarily store small volume of the decommutated data before sending 

it to a large FIFO on the board. Altera 64bit Master IP core is integrated into the same FPGA to interface the stored data to a 

higher end server. A software program is written in Visual C++ to read the data from FIFO and store in the server RAID. The 

validation of the modules is done with an inbuilt data simulator.  
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I. INTRODUCTION 

 

The hardware design consists of four major modules 1) 

Decommutator 2) FPGA On chip memory bank 3) External 

FIFO bank 4) PCI-X interface to host server. This design is 

realized in AHDL and VHDL  and the software used is 

Altera’s Quartus. The decommutator parameters are selectable 

for catering to different satellites and accordingly the on chip 

memory is configured as 1k x 64 Qwords  and data is 

temporarily written in the memory. Data is read out from the 

on chip memory and written in a large external FIFO ( 128k x 

72bits )for storing large volumes of data of the order of 

2Mbytes. The FIFO used is IDT 72T72115c.The IP core used 

is Altera MT64 and is used to interface with the PCI-X 64bit 

bus in DMA mode. The FPGA used to implement the design 

is Stratix EP1S25F1020C5 which has a capacity of 25K logic 

elements, 6 PLLs, 10 DSP blocks, 1,944,576 Memory 

elements and 706 I/Os. A software program written in VC++ 

is used to read the data from the PCI IP core and write to the 

RAID of the server. The selection parameters are written into 

the IP core and to FPGA for selecting  the desired satellite. 

Simulations and synthesis is done by the Quartus software tool 

provided by Altera. After successful total compilation the 

program output file is loaded into the FPGA using a JTAG 

connector. 

 

 

II. QUARTUS SOFTWARE AND ALTERA 

HARDWARE DESCRIPTIVE LANGUAGE 

 

The Altera  Quartus II design software is a multiplatform 

design environment that easily adapts to specific needs in all 

phases of FPGA and CPLD design. Quartus II software 

delivers the highest productivity and performance for Altera 

FPGAs, CPLDs, and Hard Copy ASICs. Quartus II software 

delivers superior synthesis and placement and routing, 

resulting in compilation time advantages. Compilation time 

reduction features include, Multiprocessor support, Rapid 

Recompile, Incremental compilation. Quartus II Analysis and 

Synthesis, together with the Quartus II Fitter, incrementally 

compiles only the parts of your design that change between 

compilations. By compiling only changed partitions, 

incremental compilation reduces compilation time by up to 70 

percent. For small engineering change orders (ECOs), the 

Rapid Recompile feature maximizes your productivity by 

reducing your compilation time by 65 percent on average, and 

improves design timing preservation. 

AHDL is a proprietary digital Hardware Description Language 

(HDL) from Altera Corporation for programming their 

Complex Programmable Logic Devices (CPLD) and Field 

Programmable Gate Arrays (FPGA). This language has an 

Ada programming language-like syntax and similar operation 

to VHDL or Verilog. It is supported by Altera's Quartus and 

Max+ series of compilers. An advantage of AHDL is that all 

language constructs are synthesizable. AHDL is to Verilog 
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much as assembly language is to a higher-level programming 

language: in AHDL, you have more control. 

III. FPGA STRATIX EP1S25F1020C5 

 

The Stratix FPGA is used to implement the four modules i.e. 

Decommutator, on chip memory, external fifo interface & 

control logic and PCI IP Master core. Stratix devices contain a 

two-dimensional row- and column-based architecture to 

implement custom logic. A series of column and row 

interconnects of varying length and speed provide signal 

interconnects between logic array blocks (LABs), memory 

block structures, and DSP blocks. The logic array consists of 

LABs, with 10 logic elements (LEs) in each LAB. An LE is a 

small unit of logic providing efficient implementation of user 

logic functions. LABs are grouped into rows and columns 

across the device. 

M512 RAM blocks are simple dual-port memory blocks with 

512 bits plus parity (576 bits). These blocks provide dedicated 

simple dual-port or single-port memory up to 18-bits wide at 

up to 318 MHz. M512 blocks are grouped into columns across 

the device in between certain LABs. M4K RAM blocks are 

true dual-port memory blocks with 4K bits plus parity (4,608 

bits). These blocks provide dedicated true dual-port, simple 

dual-port, or single-port memory up to 36-bits wide at up to 

291 MHz. These blocks are grouped into columns across the 

device in between certain LABs. M-RAM blocks are true 

dual-port memory blocks with 512K bits plus parity (589,824 

bits). These blocks provide dedicated true dual-port, simple 

dual-port, or single-port memory up to 144-bits wide at up to 

269 MHz. Several M-RAM blocks are located individually or 

in pairs within the device’s logic array. 

Digital signal processing (DSP) blocks can implement up to 

either eight full-precision 9 × 9-bit multipliers, four full-

precision 18 × 18-bit multipliers, or one full-precision 36 × 

36-bit multiplier with add or subtract features. These blocks 

also contain 18-bit input shift registers for digital signal 

processing applications, including FIR and infinite impulse 

response (IIR) filters. DSP blocks are grouped into two 

columns in each device. Each Stratix device I/O pin is fed by 

an I/O element (IOE) located at the end of LAB rows and 

columns around the periphery of the device. I/O pins support 

numerous single-ended and differential I/O standards. Each 

IOE contains a bidirectional I/O buffer and six registers for 

registering input, output, and output-enable signals. When 

used with dedicated clocks, these registers provide exceptional 

performance and interface support with external memory 

devices such as DDR SDRAM, FCRAM, ZBT, and QDR 

SRAM devices. High-speed serial interface channels support 

transfers at up to 840 Mbps using LVDS, LVPECL, 3.3-V 

PCML, or HyperTransport technology I/O  standards. 

 
III. IP CORE PCI_MT64 MEGACORE FUNCTION 

 

The IP core provides an interface between the Altera pci_mt64 

MegaCore function and a 64-bit, 2-MByte FIFO module. It 

Supports 32- and 64-bit PCI master and target transactions, 

Supports chaining and non-chaining mode DMA, Uses the 

dual-port FIFO buffer function from the library of 

parameterized modules (LPM), This design shows how to 

connect the local-side signals of the Altera pci_mt64 

MegaCore function to local-side applications when the 

MegaCore function is used as a master or target on the PCI 

bus. The design consists of the following elements Master 

control logic, DMA engine, Data path FIFO buffer functions 

and FIFO interface as shown in Fig 1. 

 

A. Master Control Logic 

When the pci_mt64 function is acts as a master, the master 

control logic interacts with the DMA engine to control the PCI 

master transactions. During a PCI master write, the data flows 

from the local master to the PCI bus. The master control logic 

Provides status of the PCI bus to the DMA engine, Interacts 

with the pci_mt64 function to execute a PCI master write 

cycle, Transfers the data from the external FIFO-to-PCI FIFO 

buffer to the pci_mt64 function. 

B.  DMA Engine 

The DMA engine interfaces with the master control logic, the 

data path FIFO buffer s, and the FIFO interface to coordinate 

DMA transfers to and from the FIFO. The DMA engine 

consists of DMA control logic, DMA registers, DMA 

descriptor FIFO buffers. 

C.  DMA Control Logic 

The DMA control logic Provides control signals to the master 

control logic to prompt it to request the PCI bus when needed, 

Triggers a new access to the external FIFO, Monitors the data 

path FIFO buffer’s and the current FIFO access, Monitors the 

DMA registers in order to initiate a new transaction, Loads the 

address counter register (ACR) and byte counter register, 

(BCR) in the DMA registers when DMA is in chaining mode, 

Updates the interrupt status register (ISR) and control and 

status register (CSR) in the DMA registers (chaining and non-

chaining mode). 

D. DMA Registers 

Setting up the DMA registers in the DMA engine initiates 

DMA transactions. These registers are memory-mapped to 

BAR0 of the pci_mt64 function; they can be accessed with a 

target transaction to their memory-mapped addresses. The 

registers must be written by another master on the PCI bus. 

The DMA registers consists of Control and status register 

(CSR), Address counter register (ACR), Byte counter register 

(BCR), Interrupt status register (ISR), Local address counter. 

E. DMA Descriptor FIFO Buffer 

The DMA descriptor FIFO buffer provides the storage area for 

the series of byte count and PCI address pairs when the DMA 

is programmed to operate in chaining mode. The size of the 

descriptor FIFO buffer is 256 x 32, and it is capable of holding 

up to 128 DMA transactions in a chain. This FIFO buffer must 
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be written with byte count and address pairs by another 

master/host on the PCI bus before starting the DMA in 

chaining mode. The descriptor FIFO buffer is read by the 

DMA control logic to fetch the current byte count to the BCR 

and address to the ACR before executing the next DMA 

transaction in a chain. 

F. Data Path FIFO Buffers 

The data path FIFO buffers serve as the buffer space for the 

data flowing between the external FIFO and PCI bus. The 

FIFO buffers are needed to resolve the external FIFO’s high 

data-access latency. The design implements the following 

FIFO buffer’s PCI-to-internal FIFO buffer (128 x 64), Data 

mask FIFO buffer (128 x 8). 

 

 
FIG 1.  BLOCK DIAGRAM OF PCI –MT64 IP CORE 

 

 

V. LOGIC IMPLEMENTED  IN THE FPGA 

 

 

The total design comprises of Data Simulator logic, Frame 

Synchronization logic, Decommutation logic, Control logic, 

FPGA on chip memory using M4K memory block, external 

FIFO banks and PCI DMA Core and interface to host server 

are realized in the 90nm FPGA as shown in Fig 2.  

FIG 2. PCM DECOMMUTATOR BLOCK DIAGRAM 

 
The dotted box indicates the modules implemented in the 

FPGA.  

A. DATA SIMULATOR 

The Data Simulator is to simulate the data. Data Simulator 

logic generates the FS code, variable line count in the aux 

field and  fixed video data pattern. A Crystal Oscillator of 

105MHz is the source which is divided to generate the 

required frequency of 52.5MHz. The serial data and clock are 

connected to a RJ45 connector. 

 

B. FRAME SYNCHRONIZATION LOGIC 

The Frame Synchronization logic is realized in the FPGA 

(Stratix EP1S25F1020C5). The 128 bit correlation function is 

realized in the FPGA. The incoming data is compared with the 

reference frame sync code. When the correlation score is >= 

the Threshold a Frame Sync Detect pulse is generated. To 

prevent false detects a flywheel logic is included with strategy 

which has a search, check and lock modes. When two 

consecutive syncs are detected the logic will change from 

search to check and later to lock mode. Like wise when a sync 

loss occurs the logic will change from lock to check and when 

two consecutive sync loss occur the logic will revert to search 

mode. 

 

C.  SERIAL TO PARALLEL AND BUFFER LOGIC 

The serial data after frame sync detection is converted into 

64bit (Qword) parallel data. The buffer logic consists of two 

128K X 72bit per channel in depth expansion mode. The 
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FIFO’s used are IDT72T72115L10BB. The 64bit Parallel data 

is written into FIFO and when the FIFO is Half Full data ready 

status will be indicated to the PCI logic and read logic will be 

initiated. Thus the read will be taking place continuously since 

the data is present in the FIFO always. 

 

D. ONCHIP RAM OF FPGA 

Simulated data and clock are inputted to the frame 

synchronizing logic, where the valid frames are detected. 

After frame synchronization, individual measurands are 

identified according to the frame location. The decommutator 

identifies and extracts embedded asynchronous data stream 

(EADS) words. The serial data is converted to 64bit (Qword) 

parallel data.  In our design the on chip memory was designed 

using the M 4K RAM block of the Stratix device. The FPGA 

memory was designed to store 1KQWords (Qword =64bit) 

and as two banks. Using the alternate buffer concept as shown 

in Fig 3 the read and write operations were designed so that 

1000 words i.e. 3 frames (each frame is 302 Qwords) of data 

can be written in one buffer and then the write operation will 

switch to the next buffer  and remaining 1000 Q Words will be 

written. When the first bank writing is complete a control 

signal will be issued by the memory controller so that the first 

buffer data can be read on to the external FIFO, thus the 3 

frames written in the first bank will be written to the external 

FIFO  by enabling the write control signal and write clock of 

the external FIFO. After read out from the first on chip 

memory bank now this bank will be ready to take in the next 3 

frames. Next the second memory bank will be writing to the 

external FIFO and this memory will also be available for next 

3 frames.  This will result in continuous write and read 

between on chip memory and external FIFOs. Thus a large 

memory of desired volume can be realized. Read operation of 

the external FIFO will empty the FIFO thus in this way 

required volume of data from multiple inputs can be written 

and stored.  
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FIG 3. MEMORY IMPLEMENTATION ON FPGA AND INTERFACE TO EXTERNAL 

FIFO. 

 

Result: Total Memory bits that were required to realize the 

above design was 573456bits out of 1944576 bits (i.e. 29.49% 

of the memory bits) and since toggling between high 

frequency clock (read) and low frequency clock (write) a 

power saving of 10% was observed. 

 

E.  PCI INTERFACE LOGIC. 

The PCI interface logic which is working in Master mode to 

support DMA is incorporated in the FPGA. Parallel data from 

the FIFO’s are read out to the Host Server through this PCI 

Interface logic operating at 66MHz. The 66MHz clock is 

derived from the Host server. The 64 bit data read out from the 

two channels will be written into two files. The Embedded 

Hardware is integrated with Higher end  server with Linux as 

Operating System. 

 

 

 

 

 

 

 

               

 

 

 

 

 

FIG 4. PCI INTERFACING DIAGRAM. 

The read control logic will start one channel read out. and 

place it on the PCI bus as input to the core as shown in Fig 4.. 

After transferring the required number of bytes an 

acknowledgement signal from the DMA engine to the read 

control logic will switch to the second channel and data will 

be sent as input to the PCI core, this process will continue till 

the required amount of data is read out. 

 

 F. DMA Engine 

As shown in  Fig 5. 

Idle: The channel is idle when no DMA is under progress. A 

transfer can be programmed and writing to DMA command 

fields starts a new transfer. 

Busy: DMA Engine is busy while processing data transfer. It 

remains so until transfer is either complete or stopped. 

Complete: When all the data has been transferred, transfer is 

complete and channel becomes idle on the next clock cycle. 
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Stop/Error: Transfer ends immediately if a master abort 

termination occurs during a transfer or if an error is detected in 

the page descriptor chain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 5. DMA STATE DIAGRAM 
 

Result: 5777 logic elements i.e. 23% of the Stratix FPGA 

capacity and 318 I/Os i.e. 45% of the FPGA I/O were used 

to implement the pci interface. Through put of 220Mbytes/ 

second was achieved.  Since the quartus structure file of the 

core was used directly the routing of all the signals was 

optimal and hence a power saving of 15% was achieved. 

 
 

V1. SIMULATION RESULT 

 

 
 

 

Fig 6. Simulation results of Decommutation logic. 

 

 

 

CONCLUSION 

 

The Single FPGA Decommutator, and associated logic 

designed and developed  is suitable for satellite data 

acquisition systems in the Ground segment. Since the 

hardware is compact and can be housed in any true 64bit 

server this forms a embedded hardware and is thus suitable for 

fixed and  mobile applications also. The throughput to the host 

achieved is between 100 to 200Mbytes/second thus it can cater 

to high speed data acquisition. Since the major modules are 

incorporated into the FPGA a power reduction of nearly 20% 

is achieved in the design. The logic is validated with an inbuilt 

simulator so that the total chain involved in the design is 

completely tested. 
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