
 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 7, September 2012

Copyright to IJARCCE www.ijarcce.com 494

DESIGN AND IMPLEMENTATION OF PCM

DECOMMUTATOR ON A SINGLE FPGA

G.PRASAD
1
 , Dr. N.VASANTHA

2

Scientist “SF”, National Remote Sensing Centre, ISRO, Hyderabad, India.

Professor & Head, Department of Information Technology, Vasavi College of Engineering, Hyderabad, Andhra Pradesh, India

Abstract: After frame synchronization, individual measurands are identified according to the frame location. The

decommutator identifies and extracts embedded asynchronous data stream (EADS) words. Thus PCM Decommutator is a

very crucial subsystem in the satellite data acquisition unit of satellite ground station. A PCM decommutator is designed and

implemented on a Stratix FPGA. The Hardware design comprises of four modules. a) Decommutator b) FPGA on chip

memory bank c) Data storage on external FIFO banks d) PCI-X Master IP core integrated on the same FPGA. Decommutator

will identify and separate the individual parameters from the incoming satellite PCM stream. M4k memory of the Stratix is

used to develop a FPGA on chip Memory module to temporarily store small volume of the decommutated data before sending

it to a large FIFO on the board. Altera 64bit Master IP core is integrated into the same FPGA to interface the stored data to a

higher end server. A software program is written in Visual C++ to read the data from FIFO and store in the server RAID. The

validation of the modules is done with an inbuilt data simulator.

Key words: Frame Synchronization, Decommutation, Onchip RAM, PCI Master Core

I. INTRODUCTION

The hardware design consists of four major modules 1)

Decommutator 2) FPGA On chip memory bank 3) External

FIFO bank 4) PCI-X interface to host server. This design is

realized in AHDL and VHDL and the software used is

Altera’s Quartus. The decommutator parameters are selectable

for catering to different satellites and accordingly the on chip

memory is configured as 1k x 64 Qwords and data is

temporarily written in the memory. Data is read out from the

on chip memory and written in a large external FIFO (128k x

72bits)for storing large volumes of data of the order of

2Mbytes. The FIFO used is IDT 72T72115c.The IP core used

is Altera MT64 and is used to interface with the PCI-X 64bit

bus in DMA mode. The FPGA used to implement the design

is Stratix EP1S25F1020C5 which has a capacity of 25K logic

elements, 6 PLLs, 10 DSP blocks, 1,944,576 Memory

elements and 706 I/Os. A software program written in VC++

is used to read the data from the PCI IP core and write to the

RAID of the server. The selection parameters are written into

the IP core and to FPGA for selecting the desired satellite.

Simulations and synthesis is done by the Quartus software tool

provided by Altera. After successful total compilation the

program output file is loaded into the FPGA using a JTAG

connector.

II. QUARTUS SOFTWARE AND ALTERA

HARDWARE DESCRIPTIVE LANGUAGE

The Altera Quartus II design software is a multiplatform

design environment that easily adapts to specific needs in all

phases of FPGA and CPLD design. Quartus II software

delivers the highest productivity and performance for Altera

FPGAs, CPLDs, and Hard Copy ASICs. Quartus II software

delivers superior synthesis and placement and routing,

resulting in compilation time advantages. Compilation time

reduction features include, Multiprocessor support, Rapid

Recompile, Incremental compilation. Quartus II Analysis and

Synthesis, together with the Quartus II Fitter, incrementally

compiles only the parts of your design that change between

compilations. By compiling only changed partitions,

incremental compilation reduces compilation time by up to 70

percent. For small engineering change orders (ECOs), the

Rapid Recompile feature maximizes your productivity by

reducing your compilation time by 65 percent on average, and

improves design timing preservation.

AHDL is a proprietary digital Hardware Description Language

(HDL) from Altera Corporation for programming their

Complex Programmable Logic Devices (CPLD) and Field

Programmable Gate Arrays (FPGA). This language has an

Ada programming language-like syntax and similar operation

to VHDL or Verilog. It is supported by Altera's Quartus and

Max+ series of compilers. An advantage of AHDL is that all

language constructs are synthesizable. AHDL is to Verilog

http://www.ijarcce.com/
http://en.wikipedia.org/wiki/Proprietary_software
http://en.wikipedia.org/wiki/Hardware_Description_Language
http://en.wikipedia.org/wiki/Altera_Corporation
http://en.wikipedia.org/wiki/Complex_Programmable_Logic_Device
http://en.wikipedia.org/wiki/Field_Programmable_Gate_Array
http://en.wikipedia.org/wiki/Field_Programmable_Gate_Array
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 7, September 2012

Copyright to IJARCCE www.ijarcce.com 495

much as assembly language is to a higher-level programming

language: in AHDL, you have more control.

III. FPGA STRATIX EP1S25F1020C5

The Stratix FPGA is used to implement the four modules i.e.

Decommutator, on chip memory, external fifo interface &

control logic and PCI IP Master core. Stratix devices contain a

two-dimensional row- and column-based architecture to

implement custom logic. A series of column and row

interconnects of varying length and speed provide signal

interconnects between logic array blocks (LABs), memory

block structures, and DSP blocks. The logic array consists of

LABs, with 10 logic elements (LEs) in each LAB. An LE is a

small unit of logic providing efficient implementation of user

logic functions. LABs are grouped into rows and columns

across the device.

M512 RAM blocks are simple dual-port memory blocks with

512 bits plus parity (576 bits). These blocks provide dedicated

simple dual-port or single-port memory up to 18-bits wide at

up to 318 MHz. M512 blocks are grouped into columns across

the device in between certain LABs. M4K RAM blocks are

true dual-port memory blocks with 4K bits plus parity (4,608

bits). These blocks provide dedicated true dual-port, simple

dual-port, or single-port memory up to 36-bits wide at up to

291 MHz. These blocks are grouped into columns across the

device in between certain LABs. M-RAM blocks are true

dual-port memory blocks with 512K bits plus parity (589,824

bits). These blocks provide dedicated true dual-port, simple

dual-port, or single-port memory up to 144-bits wide at up to

269 MHz. Several M-RAM blocks are located individually or

in pairs within the device’s logic array.

Digital signal processing (DSP) blocks can implement up to

either eight full-precision 9 × 9-bit multipliers, four full-

precision 18 × 18-bit multipliers, or one full-precision 36 ×

36-bit multiplier with add or subtract features. These blocks

also contain 18-bit input shift registers for digital signal

processing applications, including FIR and infinite impulse

response (IIR) filters. DSP blocks are grouped into two

columns in each device. Each Stratix device I/O pin is fed by

an I/O element (IOE) located at the end of LAB rows and

columns around the periphery of the device. I/O pins support

numerous single-ended and differential I/O standards. Each

IOE contains a bidirectional I/O buffer and six registers for

registering input, output, and output-enable signals. When

used with dedicated clocks, these registers provide exceptional

performance and interface support with external memory

devices such as DDR SDRAM, FCRAM, ZBT, and QDR

SRAM devices. High-speed serial interface channels support

transfers at up to 840 Mbps using LVDS, LVPECL, 3.3-V

PCML, or HyperTransport technology I/O standards.

III. IP CORE PCI_MT64 MEGACORE FUNCTION

The IP core provides an interface between the Altera pci_mt64

MegaCore function and a 64-bit, 2-MByte FIFO module. It

Supports 32- and 64-bit PCI master and target transactions,

Supports chaining and non-chaining mode DMA, Uses the

dual-port FIFO buffer function from the library of

parameterized modules (LPM), This design shows how to

connect the local-side signals of the Altera pci_mt64

MegaCore function to local-side applications when the

MegaCore function is used as a master or target on the PCI

bus. The design consists of the following elements Master

control logic, DMA engine, Data path FIFO buffer functions

and FIFO interface as shown in Fig 1.

A. Master Control Logic

When the pci_mt64 function is acts as a master, the master

control logic interacts with the DMA engine to control the PCI

master transactions. During a PCI master write, the data flows

from the local master to the PCI bus. The master control logic

Provides status of the PCI bus to the DMA engine, Interacts

with the pci_mt64 function to execute a PCI master write

cycle, Transfers the data from the external FIFO-to-PCI FIFO

buffer to the pci_mt64 function.

B. DMA Engine

The DMA engine interfaces with the master control logic, the

data path FIFO buffer s, and the FIFO interface to coordinate

DMA transfers to and from the FIFO. The DMA engine

consists of DMA control logic, DMA registers, DMA

descriptor FIFO buffers.

C. DMA Control Logic

The DMA control logic Provides control signals to the master

control logic to prompt it to request the PCI bus when needed,

Triggers a new access to the external FIFO, Monitors the data

path FIFO buffer’s and the current FIFO access, Monitors the

DMA registers in order to initiate a new transaction, Loads the

address counter register (ACR) and byte counter register,

(BCR) in the DMA registers when DMA is in chaining mode,

Updates the interrupt status register (ISR) and control and

status register (CSR) in the DMA registers (chaining and non-

chaining mode).

D. DMA Registers

Setting up the DMA registers in the DMA engine initiates

DMA transactions. These registers are memory-mapped to

BAR0 of the pci_mt64 function; they can be accessed with a

target transaction to their memory-mapped addresses. The

registers must be written by another master on the PCI bus.

The DMA registers consists of Control and status register

(CSR), Address counter register (ACR), Byte counter register

(BCR), Interrupt status register (ISR), Local address counter.

E. DMA Descriptor FIFO Buffer

The DMA descriptor FIFO buffer provides the storage area for

the series of byte count and PCI address pairs when the DMA

is programmed to operate in chaining mode. The size of the

descriptor FIFO buffer is 256 x 32, and it is capable of holding

up to 128 DMA transactions in a chain. This FIFO buffer must

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 7, September 2012

Copyright to IJARCCE www.ijarcce.com 496

be written with byte count and address pairs by another

master/host on the PCI bus before starting the DMA in

chaining mode. The descriptor FIFO buffer is read by the

DMA control logic to fetch the current byte count to the BCR

and address to the ACR before executing the next DMA

transaction in a chain.

F. Data Path FIFO Buffers

The data path FIFO buffers serve as the buffer space for the

data flowing between the external FIFO and PCI bus. The

FIFO buffers are needed to resolve the external FIFO’s high

data-access latency. The design implements the following

FIFO buffer’s PCI-to-internal FIFO buffer (128 x 64), Data

mask FIFO buffer (128 x 8).

FIG 1. BLOCK DIAGRAM OF PCI –MT64 IP CORE

V. LOGIC IMPLEMENTED IN THE FPGA

The total design comprises of Data Simulator logic, Frame

Synchronization logic, Decommutation logic, Control logic,

FPGA on chip memory using M4K memory block, external

FIFO banks and PCI DMA Core and interface to host server

are realized in the 90nm FPGA as shown in Fig 2.

FIG 2. PCM DECOMMUTATOR BLOCK DIAGRAM

The dotted box indicates the modules implemented in the

FPGA.

A. DATA SIMULATOR

The Data Simulator is to simulate the data. Data Simulator

logic generates the FS code, variable line count in the aux

field and fixed video data pattern. A Crystal Oscillator of

105MHz is the source which is divided to generate the

required frequency of 52.5MHz. The serial data and clock are

connected to a RJ45 connector.

B. FRAME SYNCHRONIZATION LOGIC

The Frame Synchronization logic is realized in the FPGA

(Stratix EP1S25F1020C5). The 128 bit correlation function is

realized in the FPGA. The incoming data is compared with the

reference frame sync code. When the correlation score is >=

the Threshold a Frame Sync Detect pulse is generated. To

prevent false detects a flywheel logic is included with strategy

which has a search, check and lock modes. When two

consecutive syncs are detected the logic will change from

search to check and later to lock mode. Like wise when a sync

loss occurs the logic will change from lock to check and when

two consecutive sync loss occur the logic will revert to search

mode.

C. SERIAL TO PARALLEL AND BUFFER LOGIC

The serial data after frame sync detection is converted into

64bit (Qword) parallel data. The buffer logic consists of two

128K X 72bit per channel in depth expansion mode. The

Parameterized

Configuration

Registers

Local Master

Controls

Local

Address/

Data/

Command/

Byte Enable

Local

Target
Control
Local Target

Control

PC I

Interface

Master

Control
logic

DMA Control
Logic

DMA Registers

DMA Descriptor

FIFO

PCI to FIFO

FIFO to PCI

Data Mask

FIFO

F

I

F

O

I

/

F

Serial to
Parallel Conversion

Data and Control
Logic for FIFO and

PCI

FIFO
Bank
 1

PCI CORE
FIFO
Bank

2

 To Host

Onchip

Memory

Frame
Synchronization

logic

Data

Simulator

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 7, September 2012

Copyright to IJARCCE www.ijarcce.com 497

FIFO’s used are IDT72T72115L10BB. The 64bit Parallel data

is written into FIFO and when the FIFO is Half Full data ready

status will be indicated to the PCI logic and read logic will be

initiated. Thus the read will be taking place continuously since

the data is present in the FIFO always.

D. ONCHIP RAM OF FPGA

Simulated data and clock are inputted to the frame

synchronizing logic, where the valid frames are detected.

After frame synchronization, individual measurands are

identified according to the frame location. The decommutator

identifies and extracts embedded asynchronous data stream

(EADS) words. The serial data is converted to 64bit (Qword)

parallel data. In our design the on chip memory was designed

using the M 4K RAM block of the Stratix device. The FPGA

memory was designed to store 1KQWords (Qword =64bit)

and as two banks. Using the alternate buffer concept as shown

in Fig 3 the read and write operations were designed so that

1000 words i.e. 3 frames (each frame is 302 Qwords) of data

can be written in one buffer and then the write operation will

switch to the next buffer and remaining 1000 Q Words will be

written. When the first bank writing is complete a control

signal will be issued by the memory controller so that the first

buffer data can be read on to the external FIFO, thus the 3

frames written in the first bank will be written to the external

FIFO by enabling the write control signal and write clock of

the external FIFO. After read out from the first on chip

memory bank now this bank will be ready to take in the next 3

frames. Next the second memory bank will be writing to the

external FIFO and this memory will also be available for next

3 frames. This will result in continuous write and read

between on chip memory and external FIFOs. Thus a large

memory of desired volume can be realized. Read operation of

the external FIFO will empty the FIFO thus in this way

required volume of data from multiple inputs can be written

and stored.

On chip

Memory

Bank 1
1k x72 bits

On chip
Memory
Bank 2

1k x72 bits

FIFO

BANK 1

2 x 128KB

FIFO

BANK 2

2 x 128KB

To
hostFPGA

64bit

64bit

64bit

Data,
Address

& control

signals

FIG 3. MEMORY IMPLEMENTATION ON FPGA AND INTERFACE TO EXTERNAL

FIFO.

Result: Total Memory bits that were required to realize the

above design was 573456bits out of 1944576 bits (i.e. 29.49%

of the memory bits) and since toggling between high

frequency clock (read) and low frequency clock (write) a

power saving of 10% was observed.

E. PCI INTERFACE LOGIC.

The PCI interface logic which is working in Master mode to

support DMA is incorporated in the FPGA. Parallel data from

the FIFO’s are read out to the Host Server through this PCI

Interface logic operating at 66MHz. The 66MHz clock is

derived from the Host server. The 64 bit data read out from the

two channels will be written into two files. The Embedded

Hardware is integrated with Higher end server with Linux as

Operating System.

FIG 4. PCI INTERFACING DIAGRAM.

The read control logic will start one channel read out. and

place it on the PCI bus as input to the core as shown in Fig 4..

After transferring the required number of bytes an

acknowledgement signal from the DMA engine to the read

control logic will switch to the second channel and data will

be sent as input to the PCI core, this process will continue till

the required amount of data is read out.

 F. DMA Engine

As shown in Fig 5.

Idle: The channel is idle when no DMA is under progress. A

transfer can be programmed and writing to DMA command

fields starts a new transfer.

Busy: DMA Engine is busy while processing data transfer. It

remains so until transfer is either complete or stopped.

Complete: When all the data has been transferred, transfer is

complete and channel becomes idle on the next clock cycle.

PCI

CORE

 RD

Contro

l

Logic

PCI

BUS Status Data of the

Channels

Chan

nel 2

Chan

nel 1

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 7, September 2012

Copyright to IJARCCE www.ijarcce.com 498

Stop/Error: Transfer ends immediately if a master abort

termination occurs during a transfer or if an error is detected in

the page descriptor chain.

FIG 5. DMA STATE DIAGRAM

Result: 5777 logic elements i.e. 23% of the Stratix FPGA

capacity and 318 I/Os i.e. 45% of the FPGA I/O were used

to implement the pci interface. Through put of 220Mbytes/

second was achieved. Since the quartus structure file of the

core was used directly the routing of all the signals was

optimal and hence a power saving of 15% was achieved.

V1. SIMULATION RESULT

Fig 6. Simulation results of Decommutation logic.

CONCLUSION

The Single FPGA Decommutator, and associated logic

designed and developed is suitable for satellite data

acquisition systems in the Ground segment. Since the

hardware is compact and can be housed in any true 64bit

server this forms a embedded hardware and is thus suitable for

fixed and mobile applications also. The throughput to the host

achieved is between 100 to 200Mbytes/second thus it can cater

to high speed data acquisition. Since the major modules are

incorporated into the FPGA a power reduction of nearly 20%

is achieved in the design. The logic is validated with an inbuilt

simulator so that the total chain involved in the design is

completely tested.

REFERENCES

[1] J. Toledo, H.Muller, J. Buytaert, F.Bal, A.David, A.Guirao and F.J.Mora

(2002), “A plug and play approach to data acquisition”, Network architecture
and performance digital equipment corporation, Littleton

[2] Bruce A.Wooley, D.Colin Fowlis, James L.Henry and Clarence

E.Williams (1979), “An integrated interpolative PCM decoder”, IEEE
transactions on communications, vol 27.

[3] Charles Geber, Kevin Yee (2000), “Peripheral component interfaces with

quick logic QL1624 FPGA”, quick logic corporation, Santa Clara.
[4] Michael J Alexander, Gabriel Robens (1996), “New Performance driven

FPGA routing algorithms”, IEEE transactions on computer aided design vol

15, No23.
[5] Xing Wang, Tapani Ahonen, Jari Nurmi (2000), “A Synthesizable RTL

design of asynchronous FIFO”, Institute of digital computer systems, Tampere

university of technology, Finland.
[6] Sirishsatahaye, K.K Ramakrishnan, Henry Young (1994), “FIFO design

for a high speed network interface”.

[7] S. Palanivelu, J.Shanmugam Prof and Head, Division of Avionics,
Madras Institute of Technology, Chrompet, Chennai “Design and

Development of PCM Decommutator with PCI –Interface.”

[8] Altera Master Core IP Mt64 User Guide.
[9] DDR and DDR2 SDRAM High-Performance Controllers and

ALTMEMPHY IP User Guide section in volume 3 of the External Memory

Interface Handbook
[10] On-Chip FIFO Memory Core in Volume 5: Embedded Peripherals of the

Quartus II

[11] IDT FIFO Reference Guide
 [12] Developing high speed memory interfaces. The Lattice SCM FPGA

advantage White paper February 2006.

[13] Memory System Design from Altera Corporation February 2010.
[14] Global Memory Mapping for FPGA based Reconfigurable systems, Iyad

Quaiss and Ranga Vemuri.

[15]. Mouzam Khan, Altera Corporation. Power Optimization in FPGA
Designs .SNUG San Jose 2006.

 [16]. Srinivas Devadas, Massachusetts Institute of Technology, Department

of EECS and Sharad Malik, Princeton University Department of EE A Survey
of Optimization Techniques Targeting low power VLSI circuits, 32nd

ACM/IEEE Design Automation Conference 1995.
[17]. Mouna Nakkar and Paul Franzon. Low Power Logical Element for

FPGA Fabric ,2002 IEEE

[18]. Dennis Hudgins, National Semiconductor. Power Supply Design
consideration for Modern FPGA’s .http://www.eetimes.com/ June 2010.

[19]. Patrick GIRARD, member IEEE Low Power Testing of VLSI circuits:

Problems and Solutions

Idl

e

COM
PLET

E
ER

R

O

R

B
US

Y

ST

OP

Write

DMA

Regist
er &

Contr

ol
fiel

ds

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 7, September 2012

Copyright to IJARCCE www.ijarcce.com 499

[20]. N.Vasantha, M. Satyam, and K. Subba Rao, “Universal Transitions

Count Module for Power Analysis,” Journal of Computer Society of India,

Vol. 36, No. 2, 2006.
[21]. Differences in logic utilization between Quatus II and Synplify report

files.Technical Brief 84, November 2002 ver 1.0

[22]. Improving FPGA Design Speed with Floorplanning by Consultant Kent
Salomon. Copyright © 2008 Danish Technological Institute

[23]. Stratix Device Handbook, Volume 1 July 2005.

Biography

G.Prasad (M-IEEE, FIETE) received

M.Tech degree in Electronics from JNTU

Hyderabad in 1995, MBA from IGNOU,

New Delhi 2000. He is presently working as

Scientist “SF” at National Remote Sensing

Centre, ISRO, Hyderabad. His nature of work

includes design and development of satellite data

acquisition systems, high speed communication between

different data acquisition sites through satellite

networking. His research interests include VLSI designs,

embedded system and realizing systems on programmable

chips.

Dr.N.Vasantha (M-IEEE, LM-

CSI,IETE,ISTE, M VSI) received the B.E.

degree from College of Engineering, Guindy,

Madras, in 1977, the M.Tech. degree from

JNTU, Hyderabad, AndhraPradesh, in 1986,

the Ph.D. degree in Electronics & Communication

Engineering from the Osmania University, Hyderabad, AP, in

2008. She is currently working as Professor & Head,

Department of Information Technology, Vasavi College of

Engineering, Hyderabad, AP. She has taken the initiative to

start the value added courses in VLSI Design, Embedded

Systems and Digital Signal Processing. Her research interests

are in Digital VLSI Design and low-power circuits. A citation

and a cash award was given by the Management Vasavi

Academy of Education for the same. She is the recipient of the

prestigious IETE-Prof. K.Sreenivasan’s Memorial

Award(2010).

http://www.ijarcce.com/

