
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 4, April 2013

Copyright to IJARCCE www.ijarcce.com 1932

AN AUTOMATIC METHOD OR

STATEMENT LEVEL PLAGIARISM

DETECTION IN SOURCE CODE USING

ABSTRACT SYNTAX TREE

D.Poongodi
1
, G.TholkkappiaArasu

2

Research Scholar, Manonmaniam Sundaranar University, Tirunelveli
1

Principal, AVS Engineering College, Salem
2

ABSTRACT: Plagiarism detection plays an important role in software security protection and license issues. Source-

code plagiarism detection method can be classified as string-based, token-based, parse-tree-based and program-

dependency-based. All of these approaches have certain limitations and can not meet the requirements when the source

code is large and may produce false positives. But, parse-tree based detection improves the detection ability and

efficiency. This paper describes method based source code detection, which detect the simple plagiarized code like

exact match, near exact match and longest common sequence. And also proposes the agent based detection which will

perform the detection automatically. Automatic plagiarism detection will be helpful for code clone detection in

software industry.

Keyword: abstract syntax tree, plagiarism detection, source code plagiarism detection, parse tree, code clone.

I. INTRODUCTION

Source code plagiarism refers to “the act of „copying

others code‟ without giving credit to the author of the

code”. Plagiarism increases in the number of resources

available in the electronic form. The easy access to the

internet has also been increased. Manual detection of

plagiarism is not very easy and is time consuming due to

the vast amount of contents available. As the amount of

programming code created is increasing, different

techniques are available to detect plagiarism in source

code. Intentional plagiarism is used knowingly from others

work without any acknowledgement. Unintentional

plagiarism becomes identical when different authors

unknowingly use the same logic. Intentional Plagiarisms

are classified into two different categories, they are

 1.1 Low-Level Plagiarism and

 1.2 High-Level Plagiarism

1.1 LOW LEVEL PLAGIARISM

 Copy-paste (with some spacing and comments &

modification)

 Plagiarism with renaming

o Methods, fields, classes

 Reordering of the code (that does not affect the

final state)

 Addition of redundant lines of code

1.2 HIGH LEVEL PLAGIARISM

 Control structures Change

 Mixing of Different sources

o Procedures

o Classes

Mixing of own and others‟ code

1.3 PLAGIARISM DETECTION APPROACHES

According to Roy and Cordy,
 [1]

 source-code similarity

detection algorithms can be classified as based on the

following

1. String Based Detection

2. Token Based Detection

3. Parse Tree(AST) Based Detection

4. PDG Based Detection

5. Metric Based Detection

6. Hybrid Based Detection

 Strings – look for exact textual matches of

segments, for instance five-word runs. Fast, but can be

confused by renaming identifiers.

 Tokens – as with strings, but using a lexer to

convert the program into tokens first. This discards

whitespace, comments, and identifier names, making the

system more robust to simple text replacements. Most

academic plagiarism detection systems work at this level,

http://en.wikipedia.org/wiki/Lexical_analysis

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 4, April 2013

Copyright to IJARCCE www.ijarcce.com 1933

using different algorithms to measure the similarity

between token sequences.

 Parse Trees – build and compare parse trees. This

allows higher-level similarities to be detected. For

instance, tree comparison can normalize conditional

statements, and detect equivalent constructs as similar to

each other.

 Program Dependency Graphs (PDGs) – a PDG

captures the actual flow of control in a program, and

allows much higher-level equivalences to be located, at a

greater expense in complexity and calculation time.

 Metrics – metrics capture 'scores' of code

segments according to certain criteria; for instance, "the

number of loops and conditionals", or "the number of

different variables used". Metrics are simple to calculate

and can be compared quickly, but can also lead to false

positives: two fragments with the same scores on a set of

metrics may do entirely different things.

 Hybrid approaches – for instance, parse trees +

suffix trees can combine the detection capability of parse

trees with the speed afforded by suffix trees, a type of

string-matching data structure.

1.4 ADVANTAGES OF AST BASED PLAGIARISM DETECTION

ALGORITHMS

The Abstract syntax tree based linear representations of

source code is efficient than the other comparison

algorithms, because the other comparison approach hide

the structure of the source code. They may identify parts

of code between two different programs as plagiarism

which are not relevant, for example in between source

code {break, continue} and so. Large source code

plagiarism detection can not deal without manipulation of

structured representations like AST or PDG. PDG

(Program Dependency Graph) is much costlier than AST.

The parse tree or AST contains the complete information

about the source code. Although the variable names and

literal values of the source are discarded in the tree

representation, more sophisticated methods for the

detection of plagiarism.

One of the benefits of the working on the lexical level is

that the lexical stream better reflects the “structure" of a

program. The parse tree or derivation tree built from the

lexical for a program also exhibits structure for the

underlying program. Furthermore, ASTs offer syntactic

knowledge which can be leveraged to filter certain types

of plagiarism.
The existing detection algorithm can meet either the

detection ability or detection efficiency. 50% of the

plagiarism detection algorithm based on AST using the

string based detection after parsing the source code. These

type of algorithm might have high efficiency but lacking

on detection ability. Remaining plagiarism detection

algorithm based on AST using the AST node directly to

compare the source code and find the plagiarism. These

types of algorithm might have high detection ability but

lacking on detection efficiency.

This paper introduce an automatic component to detect

plagiarism in source code either method level or statement

level using abstract syntax tree. In the beginning

developed an algorithm to compare the source code and

detect the plagiarism in less time. Followed by developed

the component to detect the plagiarism. So this component

will be efficient and capable to detect the plagiarism in

great manner.

II. ALGORITHM FOR CODE DETECTION METHOD

In the tree-based approach a program is parsed to a parse

tree or an Abstract Syntax Tree (AST) with a parser of the

language of interest. Similar sub trees are then searched in

the tree with some tree matching techniques and the

corresponding source code of the similar sub trees are

returned as plagiarism classes.

In part, programming languages are defined by their

grammars, which describe the set of all possible strings

that represent programs (called a language). During the

compilation process, a compiler builds a parse tree which

represents the program and uses this tree to guide

compilation.

Traverse the parse tree of different parts of source code to

identify the plagiarism between the programs.

Steps of algorithm are given below:

1. Parse the source code into a AST using AST

Parser

2. Compare the Parse trees, based on the methods

as follows

a. Count the number of children nodes that

matches for both the methods.

b. If the number of children nodes matches

with two different methods and if it is greater than or equal

to three then do the comparison

c. Find the number of children which is

matched with children for both statements.
d. Find the threshold value using the

following formula.

 

nm nm
Min(nmc(m1), nmc(m2))

nm i=0 i=0Ratio= x
nm nmMin m1, m2 !

Min(nmc(m1), nmc(m2))

i=0 i=0

 

 
 

Where nm is number of node matches in between method1

and method2.

Where nmc is number of children count for the node

matched.

e. Ratio of threshold can be configured

with 0.75 , 0.9 or any value greater than 0.5

3. Compare the tree based on statements as

a. Count the number of children node

match between two different Statements.

b. Find the number of children of matched

children for both statements.
c. Find the threshold value using the

following formula.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 4, April 2013

Copyright to IJARCCE www.ijarcce.com 1934

 

nm nm
Min(nmc(sl1), nmc(sl2))

nm i=0 i=0Ratio= x
nm nmMin sl1, sl2 !

Min(nmc(sl1), nmc(sl2))

i=0 i=0

 

 
 

Where nm is number of node matches in between

statement list1 and statement list2.

Where nmc is number of children count for the node

matched.

d. Ratio of threshold can be configured as

0.75 , 0.9 or any value greater than 0.5

 2.1 METHOD OF COMPARISON

The proposed approach of comparison is different from

the existing algorithms.

After parsing the source code into parse tree, if the

comparison is method level then comparing is as follows

1. Collecting all the methods and its child node

up to leaf node.

2. Count the number of nodes in each method

3. Based on the number of nodes compare with

other source code, if the count difference is less than or

equal to 3 then do the node match as follows

a. Take the first node or statement from the

given list of code1

b. Compare to the first node or statement

of the other list of code

c. If both the nodes match then compare

the next statement of both the list of code. Else compare

the first node of list1 to compare the second node of list2

until to find the match node or compare with all the nodes

in the list.

d. While continuous matching (like

continuously 3 nodes are matched), if the next node is not

matched then that node will be compared from the first

node including matched node.

e. Steps c and d will be repeated until the

end of both the list or all nodes are comparing with all the

nodes.

4. Depends upon the number of child node

matches, the threshold value using the ratio is calculated.

5. If the threshold value is between 0.1 and 0.9

then there is a similarity between both the codes.

Statement level comparison is as follows

1. Collecting all the statements from different

source codes.

2. Take the first statement node from the given

source code and compare with the similar program first

statement node.

3. If both the statements are equal or match with

each other then take the second node of both the source

code, if it matches then compare the next as same until

there is a match.

4. In the continuous matching , if there is any

mismatch is found then start comparing the similar

program list mismatch node with the first statement node

of the given source code.

5. If first statement node is not matched, take

second node and compare with the mismatch node.

6. If matched then next node of both the source

codes are compare like step 3.

7. Matched nodes are stored in file and this report is

the output of the algorithm

8. This algorithm finds the exact match and near

exact match like longest common sequence.

For Example,

i) Exact match or no change Comparison.

If the exact match codes are as follows
1. int i;

2. int j;

3. for(i=0;i<10;i++)
4. for (j=0;j<10;j++)

5. System.out.println(i+j);

int k;

int m;

for(k=0;k<10;k++)
for (m=0;m<10;m++)

System.out.println(k+ m);

TABLE1. SAMPLE SOURCE CODE FOR EXACT MATCH

In the above source code both the list are same, the only

difference is identifier name has been changed. This type

of plagiarism is exact match or no change plagiarism.

The proposed algorithm compares the given source code

with similar type of program and it is represented as the

below diagram for the exact match. First it takes the

statement node1 (s1) from both the parsed source code and

compares. If it is matches then compares the next node of

both the list. The process continuous until the end of both

the parsed source code is reached.

S1S1

S2

S3

S4

S5

S2

S3

S4

S5

Match List1 – s1, s2, s3, s4, s5

Match List2 – s1, s2, s3, s4, s5
FIGURE1. SAMPLE COMPARISON FOR EXACT MATCH

Finally it gives the report as text file which contains

matched node in the given source code and the similar

program source code.

ii) Near exact match or Longest Common Sequence (LCS)

Comparison

 “Near exact match” is like copying part of the

source code from others and adding own code or including

unnecessary codes. If the plagiarizer includes some code

then the source code might looks like different from the

original code.

 Some of the plagiarizer may divide the copied

code and paste in different manner without affecting the

final result of the source code. That is changing the order

of the program like first line as third or fourth line, fourth

line as first or second. Example for near exact match as

follows

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 4, April 2013

Copyright to IJARCCE www.ijarcce.com 1935

1. i=f=1;
2. for(i=1;i<=n;i++)

3. f=f*i;

4. System.out.println
 (“Factorial”);

5. System.out.println(f);

1. System.out.println(“Factorial”);
2. i=f=1;

3. for(i=1;i<=n;i++)

4. f=f*i;
5. i=s=1;

6. for(i=1;i<=n;i++);

7. System.out.println(f);

TABLE2. SAMPLE SOURCE CODE FOR NEAR EXACT MATCH

In the above source code, first and second line is repeated

and the fourth line is pasted as first line of other program.

This example code contains the “Near exact match” and

the “Longest common sequence”. Comparison of this kind

of source code as follows.

1. Compare the first node with the other entire nodes

until match.

2. Once matched then compare the next node which is in

given source code and similar program source code.

3. If mismatch occurred, it has to start comparing from

the first node until matches. If first node not matched then

second node will be compare until match occurs.

4. Once matched then repeat step2 and step3 until source

code ends.

S1S1

S2

S3

S4

S5

S2

S3

S4

S5

S6
S7

Match List1 – s1, s2, s3, s1, s2, s4, s5

Match List2 – s2, s3, s4, s5, s6, s1, s7
FIGURE1. SAMPLE COMPARISON FOR NEAR EXACT MATCH

Comparison of this source code compares the first node of

similar program , not matching so comparing with the next

node, it is matched (s1 of left side and s2 of right side),

then both the list next nodes are comparing (s2 of left side

and s3 of right side) they are matching , then same as

before (s3 of left side and s4 of right side) matching, then

the next nodes (s4 of left side and s5 of right side) are not

matching. Once mismatch occur then algorithm start to

compare from the first node to find out the repeated code.

So, it is comparing first node of left side with the next

node (s5 of right node) matching, then next taking next

nodes (s2 of left side and s6 of right side) they are

matching, next nodes are (s3 of left side and s7 of right

side) not matching. Now s1, s2 and s3 of left side are

compared with all the nodes of right side. So taking the

next nodes as which are not compared. As per this

example taking next node as s4 of left side and s1 of right

side matching then taking next node as s5 of left side and

compare with not compared nodes. S5 and s7 are

matching.

Finally it gives the report as matched node as longest

common sequence and repeated node in the given source

code and similar program source code as text file.

This algorithm reduces the time of comparison and detect

the maximum possible plagiarized or cloned code in the

given source code and the similar source code of various

programs.

III. RESULTS

 The above method of comparison algorithm is

implemented as agent based plagiarism detection using

JADE
[12]

 (Java Agent Development Environment)

framework.

 Developed the component based on multi agent

system, because it uses agents with their own actions and

behaviors. The main characteristic is to control their own

behavior and interact with the environments and other

agents. Some properties of agents are

a. The agents are able to decide their own

without the human or other interventions.

b. The agents perceive their environments

and to respond for the change occurs with them.

c. The agent has initiative and do not act

only in response to their environment.

The developed component has the following agents, which

helps to perform the task in easy manner.

1. Main agent which helps to get the type of code

detection either method level or statement level. Depends

on the type of detection it moves to the other agents as

a. Stmt_Agent gets the source code file

name which is going to compare with various similar

programs.

b. Plag_agent used to collect the various

similar programs in the collection using size and

comments or Meta data of the program.

c. Detect_agent will compare the given

source code with the various similar programs matched

with it and produce the result as text file. Which has the

filename and its location and similarities between the

program

d. Method_agent gets the file name which

is going to compare with the various similar programs.

This agent compare the methods with in the given source

code.

The developed algorithm will provide a heuristic approach

to identify plagiarized code detection in the source code

based on Method and statement comparison using ratio

threshold between the Methods or statements and

efficiently find plagiarism in less time. Some of the key

benefits of the system were:

 Reduce Software Maintenance

Detection of code that gives the same result, promises

decreased software maintenance costs corresponding to

the reduction in code size.

 Recover Licensing Issues

Plagiarisms are detected then the code will not get any

problem to get copyrights.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 4, April 2013

Copyright to IJARCCE www.ijarcce.com 1936

The output report looks like as follows

IV. LITERATURE CITED

This paper is based on the Baojiang Cui
[7]

 algorithm based

on rehash classification, which enhances the node storage

structure of the syntax tree, and greatly improves the

efficiency.

In the progress of traversal, calculate the hash value and

the number of child nodes of each node in the syntax tree,

and record the start and end line number of each node in

the source file. Then store all the nodes into a chained list.

By searching into the syntax tree, find the node with the

maximum number N of child nodes, to create an array

according to the number N. After the traversal of the

chained list set up before, do the first classification, save

nodes into the nth position of the array based on its child

node number n, so at every position of the array it creates

a chained list where stores the same kind of nodes. For

instance, if have a node -A, and “A” is the root of n nodes,

then save the information of “A” into the chained list at

position of Array.

Finally, set up an array Long Array, which has the length

of t*N according to the empiric value t. By traversing the

linked list Array got from previous step, do the modulus

calculation to the hash value of the nodes in Array. We

classify the nodes in the chained list into t categories by

the modulus value, and the according to the modulus result

h (h from 0 to k-1), save the node into the (nt+h) th

position of Long-Array [nt+h]. In this way, finish the

rehash classification.

Studied some of the Detection algorithms are classified

based on the approach and comparison method. They are

sequence, finger print, hashing, suffix tree and so.

 4.1 SIMPLE / SEQUENCE ALGORITHM

Baxter
[2]

 a used three main algorithms to detect the

plagiarisms, they are.

I. Basic algorithm is to detect sub-tree clones

II. Sequence detection algorithm, is concerned

with the detection of variable-size sequences of sub-tree

clones, and is used essentially to detect statement and

declaration sequence clones.

III. Complex near-miss clones by attempting to

generalize combinations of other clones. The resulting

detected clones can then be pretty printed. Clone removal

is not carried out.

4.2 FINGER PRINT ALGORITHM

Michel
[4]

focuses on exact tree matching retrieval through

the use of a good hash function minimizing collisions

between false-positives uses suffix tree clone detection on

AST node types, our system uses AST node fingerprints

that reflect the whole underl ying sub-tree.

A double index is maintained on the fingerprint database:

fingerprints are first sorted according by decreasing

weight, then by hash value, and also by parent linked

node. Implement these indexes using a B+-k-tree.

Since comparing nm sub-trees of m projects of size n (in

terms of nodes) for exact equality detection would require

O((nm)
2
) comparisons with a naive approach, all sub-trees

are rather fingerprinted and put in buckets according to

their hash value.

4.3 BIJECTION / MAPPING ALGORITHM

Iulian Neamtiu
[5]

 analyzes the bodies of functions of the

same name and matches their abstract syntax trees

structurally. During this process, compute a bijection

between type and variable names in the two program

versions. Then use this information to determine what

changes have been made to the code. This approach allows

us to report a name or type change as single difference,

even if it results in multiple changes to the source code.

Traverse the ASTs of the function bodies of the old and

new versions in parallel, adding entries to a

LocalNameMap and GlobalNameMap to form mappings

between local variable names and global variable names,

respectively. Two variables are considered equal if we

encounter them in the same syntactic position in the two

function bodies.

LocalNameMap will help us detect functions which are

identical up to a renaming of local and formal variables,

and GlobalNameMap is used to detect renamings for

global variables and functions.

4.4 HASHING ALGORITHM

Lingxiao Jiang Ghassan
[6]

algorithm is based on a novel

characterization of sub-trees with numerical vectors in the

Euclidean space Run and an efficient algorithm to cluster

these vectors w.r.t. the Euclidean distance metric. Sub-

trees with vectors in one cluster are considered similar.

DECKARD is both scalable and accurate. It is also

language independent, applicable to any language with a

formally specified grammar

The main idea of the algorithm is to compute certain

characteristic vectors to approximate structural

information within ASTs and then adapt Locality Sensitive

Hashing (LSH) to efficiently cluster similar vectors.

4.5 STRUCTURE BASED ALGORITHM

Young-Chul Kim
[8]

 system can check whether or not it is

structurally similar or not structurally without regard to

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 4, April 2013

Copyright to IJARCCE www.ijarcce.com 1937

modification of the programs source code and can perform

a syntax error check.

The value of similarity between two programs is as

follows: 0 ≤ Similarity(program1, program2) < 1 Compare

strings continues until max-match is bigger than min-

length. Set (total match string) is defined as a function that

stores all substring which is found in two node string. Set

(total_match_string) is defined as a function that stores all

match substring. Length(X) is defined as a function

showing the length of node string X. Length(X) function

which is used for a similarity evaluation is a function

which calculates the length of node string. Grouping is

performed on assignments which have a high similarity

among their programs

4.6 GREEDY STRING TILING ALGORITHM

Matt G. Ellis
[9]

 algorithm first, parses each program. Next,

for each pair of parse trees, convert each parse tree to a

string using some coding method. Using these strings,

construct Greedy String Tiling to obtain a metric of

similarity. Report this as the similarity between the two

programs.

It should be noted that the whole parse tree need not be

converted to a string. An intermediate stage in our

algorithm could transform the original parse tree into a

"degenerate" parse-tree by removing nodes. For example,

dropping the nodes dealing with the looping conditions is

a for node, replacing the different types of looping

constructs (for, while, do, etc) with a general loop

construct node may provide better results. These

techniques can be used to combat some common attacks.

4.7 PATTERN MATCHING ALGORITHM

William S. Evans Christopher
[10]

 structural abstraction

prototype is called Asta. Asta accepts a single AST

represented as an XML string. It has been used with ASTs

created by JavaML from Java code. Asta produces a series

of patterns that represent cloned code in a given abstract

syntax tree S. It first generates a set of candidate patterns

that occur at least twice in S and have at most H holes

Asta also generates a pattern called the full cap for v,

which is the full sub-tree rooted at v. Asta finds the

occurrences of every cap by building an associative array

called the clone table, indexed by pattern. Asta performs a

greedy version of pattern specialization, called best-pair

specialization that attempts to produce large patterns that

occur at least twice.

4.8 SUFFIX TREE ALGORITHM

Rainer Koschke
[11]

 et al. Using Abstract Syntax Suffix

Trees algorithm consists of the following steps:

1. Parse program and generate AST

2. Serialize AST

3. Apply suffix tree detection

4. Decompose resulting cloned token sequence into

complete syntactic units

The original suffix tree clone detection is based on tokens.

In our application of suffix trees, the AST node type plays

the role of a token.

Procedure emit is used to report clones based on the

representative. It may filter clones based on various

additional criteria such as length, type of clone, syntactic

type. (Basic Algorithm)

This provides an efficient clustering mechanism for exact

match of sequences of sibling sub-trees. Direct access to

indexed ASTs allows further analysis and manipulations to

extend neighboring matches into larger near-miss

similarities

According to Young-Chul Kim
[8]

 an evaluation algorithm

for program similarity and a grouping algorithm for the

sake of reducing the count of comparisons. The

experiment and estimation proves that a grouping

algorithm can reduce a lot of counts of comparison.

Baxter
[4]

 et al. To find clones in the AST, in principal to

compare each sub-tree to each other sub-tree in the AST.

This approach would not scale, and use a hash function

that first partitions the AST into similar sub-trees.

Hash function cannot be perfect (there is an infinite

number of possible combinations of AST nodes), it is

necessary to compare all sub-trees within the same

partition in a second step. This comparison is a tree match,

where use an inexact match based on a similarity metric.

The similarity metric measures the fraction of common

nodes of two trees. Cloned sub-trees that are themselves

part of a complete cloned sub-tree are combined to larger

clones. Special care is taken of chained nodes that

represent sequences in order to find cloned subsequences.

V. DISCUSSION

The proposed system is based on multi-agent system using

Abstract Syntax tree. It is implemented with the help of

JADE framework and Eclipse.

5.1 EVALUATION

To evaluate the effectiveness of proposed algorithm,

collected various similar programs and compared.

Once the source code is converting into the parse file,

comparison process is easy cause of the algorithm

approach.

Java was used to parse the source code into abstract syntax

tree. Each statement of source codes is converted into AST

based node and each node contains full information about

the statement.

Then the number of node matches is finding based on

program level or method level of the source code.

The output file is like report about the statement or method

matches in various similar programs.

CONCLUSION

Today, Plagiarism detection in source code is an active

research area. In this paper presents how the plagiarism

detection can be handled using the new algorithm based on

the AST. The proposed algorithm reduced the time of

comparison. It might take minimum O(n) comparison time

to detect the plagiarism in source code. It is developed

using agent oriented programming, so man power also

reduced. Agent can control their own behaviors, actions

and communicate with other agents. The component is

based on multi-agent system, so it is helpful to control

their own behavior and interact with the environment and

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 4, April 2013

Copyright to IJARCCE www.ijarcce.com 1938

other agents. This study may help the plagiarism detection

users to detect the plagiarized code.

5.3FUTURE ENHANCEMENT

 This proposed approach support only for the java

based source code the same approach may be used to

compare with cross programming language, which is

language independent comparison.

 This algorithm helps to detect the plagiarism and

cloning in source code in effective manner, it might be

give false positives. However, still some of the algorithms

lacking to avoid the false positives. In future these

algorithms may be improved to avoid false positives and

detect all type of plagiarism to affect success plagiarism

detection using AST. So it may enrich to avoid false

positive with efficient manner.

 General approaches are using like Meta data to

find the similar program or logic of source code, find the

similar logic of source code without using Meta data.

REFERENCES

1. Roy, Chanchal Kumar;Cordy, James R.."A Survey on

Software Clone Detection Research". School of Computing, Queen's
University, Canada. (September 26, 2007)

2. Baxter,I.D, Yahin,A.; Moura, L.; Sant'Anna,M; Bier, L.

“Clone detection using abstract syntax trees”, International conference

on software maintenance 1998.

3. Kevin Greenan, “Method-Level Code Clone Detection on

Transformed Abstract Syntax Trees Using Sequence Matching
Algorithms” University of California - Santa Cruz , 2005

4. Michel Chilowicz, Etienne Duris and Gilles Roussel “Syntax

tree fingerprinting: a foundation for source code similarity detection”,
University Paris-Est.

5. Iulian Neamtiu;Jeffrey S. Foster;Michael Hicks

“Understanding Source Code Evolution Using Abstract Syntax Tree
Matching” MSR '05

6. Lingxiao Jiang Ghassan and St´ephane Glondu “DECKARD:

Scalable and Accurate Tree-based Detection of Code Clones” Software
Engineering, 2007. ICSE 2007

7. Baojiang Cui, Jun Guan, Tao Guo, Lifang Han, Jianxin Wang
and Yupeng J “Code Syntax-Comparison Algorithm based on Type-

Redefinition-Preprocessing and Rehash Classification” , Journal of

Multimedia, Vol 6, No 4 (2011), 320-328, Aug 2011

8. Young-Chul Kim and Jaeyoung Choi “A Program Plagiarism

Evaluation System” , ICCSA 2005 Volume 3483, 2005.

9. Matt G. Ellis, Claude W. Anderson “Plagiarism Detection in
Computer Code” March 23, 2005

10. William S. Evans Christopher W. Fraser Fei Ma “Clone

Detection via Structural Abstraction” 14th Working Conference on
Reverse Engineering (WCRE 2007)

11. Rainer Koschke, Raimar Falke, Pierre Frenzel “Clone

Detection Using Abstract Syntax Suffix Trees” 13th Working Conference
on Reverse Engineering (WCRE 2006), October 2006.

12. http://jade.tilab.com/doc/tutorials/JADEProgramming-

Tutorial-for-beginners.pdf
13. http://jade.tilab.com/doc/administratorsguide.pdf

14. http://www.intechopen.com/books/multi-agent-systems-

modeling-control-programming-simulations-and-applications/principles-
of-agent-oriented-programming

15. http://www.informatik.uni-freiburg.de/~ki/teaching/ws0910

/imap/01_Introduction.pdf

