
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

 Copyright to IJARCCE www.ijarcce.com 530

Efficient Handling of XML Tree Pattern

Matching Queries – A Holistic Approach

Sravan Kumar K
1
, Madhu P

2
, Raghava Rao N

3

M.Tech-SE, DRK Institute of Science and Technology, JNTUH, Hyderabad, India
1

M.Tech-CS, DRK College of Engg. and Technology, JNTUH, Hyderabad, India
2

HOD, Dept. of CSE, DRK Institute of Science and Technology, JNTUH, Hyderabad, India
3

ABSTRACT:XML has become a defacto standard to store, share and exchange business data across homogenous and

heterogeneous platforms. The interoperability is possible though XML. As enterprises are generating huge amount of

data in XML format, there is a need for processing XML tree pattern queries. The existing holistic algorithms for XML

tree pattern matching queries exhibit suboptimmality problem as they consider intermediate results before taking final

results. This causes suboptimal performance. This suboptimality is overcome by using TreeMatch algorithm. This paper

implements a prototype application that makes use of dewey labeling scheme to overcome suboptimality. The

experimental results revealed that the proposed algorithm is better than the existing algorithms.

Index Terms –XML, parser, XSL, algorithms, dewey labeling, xml tree pattern query.

I. INTRODUCTION

Due to the business collaborations and for the purpose

of portability enterprises are storing data in XML

format. This has become a common practice as XML is

portable and irrespective of platforms in which

applications were developed, they can share information

through XML file format. Such XML files are also

validated using DTD or Schema. XML parsers are

available in all languages that facilitate the usage of

XML programmatically. Moreover XML is tree based

and it is convenient to manipulate easily using DOM

(Document Object Model) API. XML tree pattern

queries are to be processed efficiently as that is the core

operation of XML data. Recently many researchers

developed various methods or algorithms [2], [3], [4],

[5], [6], [7] for processing XML tree queries. A stack

based algorithm [1] was proposed by Khalifa et al. that

matches relationships such as A-D, and P-C. TwigStack

is another algorithm proposed by Bruno et al. [8] for the

purpose of XML tree pattern queries. However, the

drawback of these algorithms is that they take

unnecessary intermediary nodes while processing the

query thus causing more time to process. To overcome

the drawbacks indexing concept is used by algorithms

provided in [9] and [10]. Some other algorithms use

labeling schemes [11]. In industrial and academic

applications these algorithms have proven to be highly

promising [12]. However, from the study ofliterature we

observed the fact that there is less research with respect

to XML tree pattern queries with wildcards, order

restrictions, negation and functions.

To address all these problems, we implement a

TreeMatch algorithm that avoids suboptimality of those

algorithms. This algorithm is based on the extended

dewey labeling. As per the labeling scheme, the root

node, children, grand children etc. a number or label is

associated. For instance 0 is assigned to root node. The

children of root gets labeling such as 0.0, 0.1 etc. The

grand children of first parent node start with 0.0.0 and

continue like 0.0.1 etc.

The rest of the paper is organized as follows:

Section II reviews the literature that gives insights into

the research topic. Section III explains the system

modeling. Section IV shows proposed technique.

Section V provides the experimental results while

section VI concludes the paper which is followed by the

references.

II. RELATED WORK

As XML databases are growing in quantity and usage by

enterprises, it is essential to have an efficient mechanism

to answer such queries. In literature many researchers

have proposed algorithms for XML tree pattern query

processing. Many have handled such queries efficiently.

However, most of them did not focus on wildcards,

functions, order criteria and negation. In this paper we

overcome this entire problem by implementing a

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

 Copyright to IJARCCE www.ijarcce.com 531

TreeMatch algorithm [1]. XML query processing was

considered by Timber [13] and Lore DBMS [9]. More

focused research on XML storage, and relational

databases were done in [14], [15], [16], [17]. These

techniques can be leveraged by our holistic algorithm

TreeMatch. Choi et al. [18] developed many theorems

that are used to prove that the holistic algorithms for

XML tree pattern matching can’t solve the problem of

suboptimality. XML twig queries and their space

complexity has been studied in [19] by Shalem and

BarYossef. They considered upper bound in parent –

child and ancestor – descendent relationships in query

processing. Many algorithms developed in existing

works have focused on XML tree pattern matching

queries in terms of P-C or A-D relationships or both. All

these holistic algorithms have drawbacks in query

processing. Their computational cost is more as they

take some intermediary results in to consideration which

is not necessary. That problem is considered matching

cross and those results in suboptimiality of performance.

Apart from holistic algorithms for XML tree pattern

matching queries; there are many other approaches

available. For instance ViST [20] and PRIX [21]

perform processing by transforming XML tree pattern

match into a sequence match. Those algorithms gave

importance to only ordered queries and extending them

to support unordered queries is non-trivial. In [14] a

comprehensive research and experiments were made in

order to compare various algorithms used to match

XML tree pattern matching queries. Those algorithms

are holistic and confirm that they are best available

algorithms for XML tree pattern matching queries. They

provide guarantee in performance and robust in nature.

Nevertheless, they have drawback of using some

unnecessary intermediary results that they can’t prevent.

The proposed algorithm TreeMatch thing in the lines of

holistic and overcomes the problem of suboptimality in

XML tree pattern matching queries. Moreover it

supports 3 types of classes as described in [1] and the

prototype application implemented demonstrates all

three kinds of queries with negative predicates, wild

cards, ordered and unordered restrictions. The tree

match algorithm is based on the extended dewey

labeling scheme.

III. EXTENDED DEWEY LABELING

It is an improved labeling scheme that considers the root

label as zero. The children of root are given 0.1, 0.2, etc.

The grand children of root are given as 0.1.0, 0.1.1, etc.

This labeling scheme can describe the tree easily. Once

a node is found, its ancestors and descendents and other

relationships can be found easily. For instance, 0.0.1.5

indicates that 0.0.1 is the parent of current node and

grand parent is 0.0 and the root is 0. This labeling makes

XML tree pattern matching query processing easy.

IV. PROPOSED ALGORITHM

Fig. 1 – The main TreeMatch Algorithm [1]

This algorithm invokes functions provided in [1] to

complete query processing. It makes use of locating

matching extended dewey label for the given query and

then completes processing. As discussed in the

introduction, this algorithm is an improved holistic

algorithm that makes use of labeling scheme and avoids

taking useless intermediary results. Thus its processing

time is less and solves the problem of suboptimality.

V. EXPERIMENTS and RESULTS

A. Environment

The environment used for the experiments include Java

Programming Language (JSE 6.0), Net Beans IDE, a PC

with 2GB RAM. The SWING API of Java is used to

build graphical user interface while the IO and XML

API of Java are used for actual functionality.

B. Prototype Application

For extended XML tree pattern matching while making

queries on XML database, the main screen of the

application appears as shown in fig. 6. The application

has three buttons. The browse button enables user to

choose any XML file on which queries are to be made.

The XML document tree is shown in the text area. The

DeweyLabling button generates XML tree with Dewey

Labeling scheme implemented.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

 Copyright to IJARCCE www.ijarcce.com 532

Fig. 6 – The main GUI of the application

On choosing QueryAnswering button, the application

takes user to a form where queries can be made. The

application supports all kinds of XPATH queries.

However, the queries are processed as per the

algorithms presented in [1]. Especially dewey labeling

made the query processing easy as it is simple to

determine ancestor and descendent relationships with

dewey labeling. In Fig. 6 books details are in XML

format. The root element is catalog and it contains a

collection of books. All queries later are made on this

XML only. However, the application has been tested

with a variety of XML files containing variations such

as empty elements, elements only elements, mixed

elements, elements with body etc. The tested XML files

have both complex and simple elements. Dewey

labeling for the selected XML file is visualized as

shown in fig. 7.

Fig. 7 – XML tree with Dewey Labeling

As can be seen in fig. 7, dewey labeling starts with root

element with label zero. All children of root get labeling

like 0.1, 0.2 and so on. The root element is “catalog”

which has label 0. The first child “book” element has

label 0.1. In turn the children of first book element have

the labels like 0.1.0, 0.1.1, 0.1.2 and so on. This way

labeling is applied to the entire tree. When label of any

element dewey is known, it is possible to find its

siblings, ancestor and descendents easily. Wild cards are

also supported in the query processing of the

application.

C. Tree Pattern Matching Queries

On clicking “Query Answering” button on the main

screen of the application user is given a query window

where tree pattern matching queries can be given. The

proposed application supports the 3 types of queries as

described in [1]. Fig. 8 shows both query and the

corresponding answer.

The query here is //book. It does mean that all book

elements irrespective of their position in the XML root

element are to be presented. This is evident in the

results. The results window also has provisions to

further manipulate the XML tree visualized. It supports

operations like adding new node, deleting node,

searching for a node and searching and deleting a node.

Fig. 8 – Query and Results without wildcards

Fig. 9 shown query with wild card characters and

results.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

 Copyright to IJARCCE www.ijarcce.com 533

Fig. 9 – Query with wildcards and results

As can be seen in fig. 9, the query is given as “//*”. This

does mean that any element present anywhere in the

document. The results reveal the entire XML file. The

query results are presented in fig. 9 in the form of a tree.

JTree class of Java SWING API is used to visualize

XML tree. This tree is flexible and can be navigated and

manipulated easily. Fig. 10 shows a query with

restriction in terms of siblings.

Fig. 10 – Query with Sibling and Results

As can be seen in fig. 10 the query given is

“catalog/book/title[following-sibling::author]”. It does

mean that the root element must be catalog and its sub

element book. The book’s sub element must be title and

the title must have a sibling followed by it. The results

that match these criteria are shown in fig. 10. Fig. 11

shows query with negation.

As can be seen in fig. 11, the given query is

“//book[not(author)]. It does mean that “book” element

can be anywhere in the XML file without having

“author” element in it. The query results revealed that

two books are available without author.

Fig. 11 – Query with Negation and Results

D. Results

The experimental results of TreeMatch algorithm is

compared with other holistic algorithms such as

TwigStack, and TJFast.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

 Copyright to IJARCCE www.ijarcce.com 534

 (a)

 (b)

Fig. 12 – Execution time on random data (a) Small memory

(b) Large memory

As seen in fig. 12, with respect to small and large

memory with random data TreeMatch performance is

always best.

Fig. 13 – Execution time on TreeBank data(large memory).

As seen in fig. 12, with respect to large memory with

TreeBank data TreeMatch performance is always best.

VI. CONCLUSION

This paper overcomes the suboptimality in holistic XML

tree pattern matching algorithms. The TreeMatch

algorithm as described in [1] is explored and the

processing of all three types of XML tree pattern

matching queries with the help of dewey labeling

scheme. A prototype application is built to demonstrate

the efficiency of TreeMatch algorithm and tested with

extensively with all three kinds of queries. The

experimental results reveal that the algorithm is capable

of avoiding retrieval of intermediary results before

obtaining final results. It does mean that it overcomes

the problem of suboptimamlity that existed in the

previous algorithms.

REFERENCES

[1] Jiaheng Lu, Tok Wang Ling, Senior Member, IEEE, ZhifengBao,

and Chen Wang.Extended XML Tree Pattern Matching: Theories and

Algorithms.IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011

[2] R. Goldman and J. Widom, “Dataguides: Enabling

QueryFormulation and Optimization in Semistructured
Databases,”Proc. Int’l Conf. Very Large Data Bases (VLDB), pp. 436-

445, 1997.

[3] Q. Li and B. Moon, “Indexing and Querying XML Data forRegular
Path Expressions,” Proc. Int’l Conf. Very Large Data Bases(VLDB),

pp. 361-370, 2001.

[4] N. Bruno, D. Srivastava, and N. Koudas, “Holistic Twig
Joins:Optimal XML Pattern Matching,” Proc. ACM SIGMOD, pp.

310-321, 2002.

[5] H. Jiang et al., “Holistic Twig Joins on Indexed XML
Documents,”Proc. Int’l Conf. Very Large Data Bases (VLDB), pp.

273-284, 2003.

[6] C.Y. Chan, W. Fan, and Y. Zeng, “Taming Xpath Queries
byMinimizing Wildcard Steps,” Proc. Int’l Conf. Very Large Data

Bases(VLDB), pp. 156-167, 2004.

[7] W. Wang, H. Wang, H. Lu, H. Jiang, X. Lin, and J. Li,
“EfficientProcessing of XML Path Queries Using the Disk-Based

F&B Index,”Proc. Int’l Conf. Very Large Data Bases (VLDB), pp.

145-156, 2005.
[8] N. Bruno, D. Srivastava, and N. Koudas, “Holistic Twig

Joins:Optimal XML Pattern Matching,” Proc. ACM SIGMOD, pp.

310-321, 2002.
[9] S. Chen, H.-G.Li, J. Tatemura, W.-P.Hsiung, D. Agrawal, and

K.S.Candan, “Twig2stack: Bottom-Up Processing of Generalized-

Tree-Pattern Queries over XML Document,” Proc. Int’l Conf. Very
LargeData Bases (VLDB), pp. 19-30, 2006.

[10] H. Jiang et al., “Holistic Twig Joins on Indexed XML
Documents,”Proc. Int’l Conf. Very Large Data Bases (VLDB), pp.

273-284, 2003.

[11] J. Lu, T.W. Ling, C. Chany, and T. Chen, “From Region
Encodingto Extended Dewey: On Efficient Processing of XML Twig

PatternMatching,” Proc. Int’l Conf. Very Large Data Bases (VLDB),

pp. 193-204, 2005.
[12] P. ONeil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N.

Westbury,“ORDPATHs: Insert-Friendly XML Node Labels,” Proc.

ACMSIGMOD, pp. 903-908, 2004.
[13] H.V. Jagadish and S. AL-Khalifa, “Timber: A Native

XMLDatabase,” technical report, Univ. of Michigan, 2002.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

 Copyright to IJARCCE www.ijarcce.com 535

[14] M. Moro, Z. Vagena, and V.J. Tsotras, “Tree-Pattern Queries on

aLightweight XML Processor,” Proc. Int’l Conf. Very Large

DataBases (VLDB), pp. 205-216, 2005.
[15] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and G.M.

Lohman,“On Supporting Containment Queries in Relational

DatabaseManagement Systems,” Proc. ACM SIGMOD, pp. 425-436,
2001.

[16] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram,

E.J.Shekita, and C. Zhang, “Storing and Querying Ordered XMLUsing
a Relational Database System,” Proc. ACM SIGMOD,pp. 204-215,

2002.

[17] P. ONeil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N.
Westbury,“ORDPATHs: Insert-Friendly XML Node Labels,” Proc.

ACMSIGMOD, pp. 903-908, 2004.

[18] B. Choi, M. Mahoui, and D. Wood, “On the Optimality of
theHolistic Twig Join Algorithms,” Proc. 21st Int’l Conf. Database

andExpert Systems Applications (DEXA), pp. 28-37, 2003.

[19] M. Shalem and Z. Bar-Yossef, “The Space Complexity
ofProcessing XML Twig Queries over Indexed Documents,” Proc.24th

Int’l Conf. Data Eng. (ICDE), 2008.

[20] H. Wang and X. Meng, “On the Sequencing of Tree Structures for
XML Indexing,” Proc. 21st Int’l Conf. Data Eng. (ICDE), pp. 372-

383, 2005.

[21] P. Rao and B. Moon, “PRIX: Indexing and Querying XML
UsingPrufer Sequences,” Proc. 20th Int’l Conf. Data Eng. (ICDE), pp.

288-300, 2004.

Biography

Sravan Kumar K is a student of

DRK Institute of science and

Technology, Ranga Reddy,

Andhra Pradesh, India. He has

received B.Tech degree in

Computer Science and

Engineering and M.Tech Degree

in Software Engineering. His

main research interest includes

Software Engineering, Enterprise

Resource Planning.

Madhu P is a student of DRK

College of Engineering &

Technology, Ranga Reddy,

Andhra Pradesh, India. He has

received B.Tech Degree in

Computer Science and

Engineering and M.Tech Degree

in Computer Science. His main

research interest includes

Software Engineering.

Raghava Rao N is working as

Associate Professor at DRK

Institute of Science &

Technology, Ranga Reddy, and

Andhra Pradesh, India. She has

received M.Tech Degree in

Computer Science. His Main

Interest includes Cloud

Computing, Software

Engineering.

http://www.ijarcce.com/

