
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5325

Malicious Host and Problem of Blocking for

Mobile Agent: Proposed Solution

Dr. Heman Pathak

Associate Professor, Department of Computer Science, GKV, Haridwar, Uttarakhand, India
1

Abstract: Mobile Agent (MA) is a software programs that lives in computer networks, performing its computations

and moving from host to host as necessary to fulfil user goals. Autonomous behaviour of MA and the malicious

environment of the internet give rise to various important security issues related with both MA and its host. Various

researchers working in the areas have identified various threats and their effects. During its life cycle a MA moves from

one host to other. If MA is malicious or if the executing environment i.e. host is malicious they both can influence each

other and can harm in many ways. If the MA wishes to visit a host which has been detected as malicious then it should

not migrate to that host. In this case MA will be blocked at its current location. This paper discusses the problem of

blocking for MA for malicious host and proposes a group based layered architecture to mask the malicious host from

rest of the network. Proposed architecture is centralized at one level and distributed at other. It divides the open

network like internet into regions and hosts in each region are then grouped on the basis of services they offered. One

of the host acts as group in-charge. This group appears as a single host to the other parts of the network. In case, a host

is found malicious, load of that host is distributed among other trusted group members and recovery procedure for host

started.

I. INTRODUCTION

Mobile Agent (MAs) is autonomous objects that are able

to migrate from node to node in a computer network. The

ability to roam the net is provided by a middleware

platform, a Mobile Agent System (MAS). The use of MAs

has been proposed for many application areas, including

electronic commerce, systems management, or active

messaging [1][2]. All these applications require a MA to

be executed reliably. Before MA applications begin to

appear on a large scale, MASs need to provide

infrastructure services to facilitate MA development.

Among these are security, fault tolerance, location

management and transaction support.

If itinerary (The set of hosts to be visited by a MA during

its life cycle) of MA is static (entirely defined at the MA

source and does not change during its execution) and order

of visiting hosts is fixed then MA will be blocked if the

target host at any stage of its life cycle is detected

malicious till the host recovers and become trust worthy

again. Blocking MA executions are undesirable. In

particular, if the failed component does not recover, the

MA is lost and never returns to its owner [7].

In paper [5] and [7] we propose a group based layered

Hierarchical Fault Tolerance Protocol (HFTP) for MA.

HFTP can tolerate various kinds of faults that may appear

during the life cycle of MA. This paper explores the

possibility to adopt HFTP to solve the problem of

blocking. If malicious behaviour of host is treated as fault

then this fault may be masked by grouping of host and

tolerated successfully. Following section introduces the

architecture of HFTP and modifications required to solve

the MA blocking problem.

II. HIERARCHICAL FAULT TOLERANCE PROTOCOL

(HFTP)

HFTP has been proposed to tolerate different kinds of

faults that may occur during the life cycle of MA. During

its life cycle, a MA can fail due to some uncaught

exception, or due to the failure of the MAS, or its

components or the host machine. The MA may also be lost

on its way or blocked due to link failure. Since failure

occurs at different places due to different reasons,

specialized approaches have been used to tolerate different

kinds of faults. This paper does not discuss the details

about the faults and tolerance schemes of HFTP but only

introduces the architecture and components of HFTP that

can cooperate to solve problem of blocking.

A. System Model

The system model used by HFTP divides the open

network like internet into regions. Instead of doing a

logical partitioning of the network into regions and then

arranging them into hierarchy, it uses the existing

technology to serve its purpose. Internet is network of

networks. Networks are connected with each other via

router [3]. HFTP treats each network as a region and

router as the centralized component in each region. Router

in proposed architecture is not passive but plays an active

role. A MA wishes to visit a host within a network, first

arrive at the router. MAS is installed at router but it is

responsible only to receive and pass the MA to the

designated host in the network, not to execute them.

Routers are assumed to be fault-free and trustworthy. In

each network there is shared local storage space (LSS),

which is accessible by all hosts and assumed to be fault

free and trust worthy. Figure-1 shows the basic

architecture of the HFTP[4][6].

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5326

Figure 1: Architecture of Hierarchical Fault Tolerance

Protocol

B. Grouping of Hosts

Concept of grouping the hosts to tolerate faults has been

successfully used by various researchers working in the

field of distributed computing. In each network hosts are

grouped based on the kind of services they offer. Hosts are

grouped logically. Within each group one host acts as in-

charge. A MA submitted at one host for execution may be

executed on any member of the group. Group in-charge is

responsible for executing a deterministic algorithm to

assign a host to the MA submitted to the group impartially.

Its algorithm can be modified to distribute the load of a

malicious host among the trusted members of group

during recovery and protects the MAs were executing on

the malicious host. Within a network, there may be various

groups. One host may be part of one group only. Each

group appears as a single host to other hosts of the

distributed system. Hosts in the group communicate each

other by using group communication services designed to

operate within the LAN.

If a group in-charge fails, another member host of the

group takes its place according to a predefined priority.

Once a new host becomes the in-charge, it is its

responsibility to inform other members about this change.

Figure 2: Group within a Network

C. Data Structures for Table

Once a group is formed, records of each group and all

agents running on each group of network are put in

various tables implemented in LSS.

1) Group table

The GroupTable contains information about which host is

part of which group and which is the in-charge of the

group. Each group is uniquely identified by a GroupId. A

group is characterized by its in-charge, active members

and size. GroupTable is accessed by all hosts but modified

only by the group in-charge. Entries in the GroupTable are

modified when a host found malicious or recovers and

become trustworthy again. Table-2 shows the structure of

GroupTable.

TABLE 1: GROUP TABLE

GroupId In-charge Size Member HostId

2) Agent Table

The AgentTable stores information about which MA is

running on which group as well as on which host. Table-2

shows the structure of AgentTable.

TABLE 2: AGENT TABLE

AgentId GroupId HostId

3) MalHostTable

This table maintains a list of hosts currently unavailable as

their behaviour has been found malicious or they are under

recovery. Table-3 shows the entries in MalHostTable.

TABLE 3: MALICIOUS HOST TABLE

GroupId List of Malicious member HostId

All these tables are accessed by all hosts but can be

updated only by the group in-charges or the Router. Group

and MalHostTable are updated when a host becomes

inaccessible or recovers. Similarly AgentTable and

GroupTable are updated when a MA is submitted or has

completed its execution at a host.

4) Local Agent Table

A Local Agent Table is maintained at each host to keep

records of all the MAs running on each host of the group it

belongs. Its entries are shown in Table 4.

TABLE 4 - LOCAL AGENT TABLE

AgentId HostId

D. Layered Architecture of HFTP

HFTP uses a 3-level layered architecture. Server at the

lowest layer is Personal Daemon Server (PDS), at the

middle level Local Daemon Server (LDS) and at the

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5327

highest level is Global Daemon Server (GDS). LDS and

PDS are installed on each host of the network. GDS is

installed on routers only. This section briefly describes the

functionality of each server.

1) Personal Daemon Server (PDS)

PDS is the server at the lowest layer, installed on each host

of the network. It monitors the MAS and all MAs running

at the host by maintaining a thread for each. In case

behaviour of MA or MAS is found malicious, it informs

other group members about this observation and initiates

recovery procedure of MAS. Figure-3 shows its

responsibilities in brief.

Figure 3: Functions of the Personal Daemon Server

2) Local Daemon Server (LDS)

LDS is the server at the middle level, installed on each

host of the Network. It is responsible for detecting the

malicious behaviour of the host and for executing all

group communication services within the group. In case

either a host or MAS installed on the host found malicious,

it distributes the load of the malicious host among trusted

members of the group. Figure-4 shows its responsibilities

in brief.

Figure 4: Functions of the Local Daemon Server

3) Global Daemon Server (GDS)

The GDS is the server at the highest level. It is installed

only at the Router. MAs arrive and migrated via router.

GDS is responsible for implementing various security,

location management and fault tolerant routines. GDS is

responsible for evaluating the trustworthiness of MAs and

hosts in the network. If it found an incoming MA trust

worthy, MA is passed to the target group in-charge.Figure-

5 shows its responsibilities in brief.

Figure 5: Functions of the Global Daemon Server

E. Protocol

Above sections discuss the various components and their

roles in HFTP. As in this paper we are exploring the

possibility to modify the HFTP to solve the MA blocking

problem, this section explains, how these components can

cooperate to mask the malicious host and continue with

the execution of MA. As discuss earlier a group appears as

a single host to the rest of the system, a user who launch

the MA, provides its ordered itinerary as a list of GroupId.

MA moves from a group in one network to group in other

network via router. The steps followed since a MA is

arrive at a network are-

 MAS is installed at the Router receives the MA.

 GDS Logs an arrival entry logarrive in LogTable.

 Checks the next address in the MA itinerary.

 Passes the MA to the in-charge of the group.

 LDS installed at Group In-charge executes a

deterministic algorithm to select a trusted host with

minimum load to execute the MA and transfers MA to the

selected host.

 Agent Tables are updated accordingly.

 A message is broadcasted among the members to

update their LocalAgentTable.

 As soon as MA arrived at host, host checkpoint its

state and system state in LSS.

 PDS installed at host, starts a new thread to watch the

execution of MA.

 MAS installed at host execute the MA and checkpoint

its state after every successful transaction or whenever

needed.

 After successful execution of MA, it is submitted at

the Router.

 PDS terminates its thread after successful migration

and deletes useless checkpoint data.

 Local and Global Agent Tables are modified

accordingly.

F. Malicious Host and Recovery Steps

As mentioned earlier, it has been assumed that every

network implements some Security Management System

to detect whether a host is trusted or malicious and

maintains a list of failed host. We further assume that

some recovery management system is also implemented in

the network to clean the malicious host and make it trust

worthy again. Security Management System of the

network may identify a host malicious any time and

inform the group in-charge about its finding. This section

PDS

Informs LDS
about the
malicious

behavior of
MAS

Executes the
recovery

routine in case
MA fails

Re-installs
MAS in case it

fails

Watches MA
and MAS

LDS

Distributes the
load of

malicious host
among trusted

hosts.

Watches hosts &
select In-charge

Implements Group
Communication

Services

Assigns a host
to MA

submitted

GDS

Detects Group
Failure, and

recover MA in
failed group.

Responsible for
fault tolerant
migration of

MAs.

Receives MA
from other

network and
Pass to the

group In-charge.

Logs arrival and
departure of
MAs in the

network into
LogTable.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5328

discusses the masking of this malicious host and recovery

of MA hosted by it by the group.

 Once the router informs the in-charge about malicious

behaviour of host, it distributes the load of malicious host

among remaining group members and updates tables

accordingly.

 Newly selected hosts recover the MAs from their last

checkpoint state and continue their execution.

 Recovery of malicious host is the responsibility of its

own network recovery management system.

 If the failed host is the group in-charge, then

remaining members of the group cooperatively elect a new

group in-charge based on priorities.

 Newly elected in-charge then updates tables

accordingly.

 If malicious host was the only host in the group, then

group failure is recognized by the router and all the MAs

running in the group are blocked until a member become

trusted again.

 If the order of the host to be visited is not fixed then

MA is migrated to other host and try the failed host latter

until at least one of the host become trusted.

III. CONCLUSION

As discussed in the paper, it has been observed that by

using the grouping of host MA blocking problem can be

successfully solved for the HFTP and continue the

execution of MA even if the target host is found malicious.

HFTP has already been modeled using the Colored Petri

Net (CPN) and verified for its performance [8] based on the

simulation results. Since most of the approaches used here

are well known and has already been implemented

successfully so it is quite reasonable to accept that, this

architecture once implemented will solve the concern

issues successfully. Its efficiency or comparative

performance analysis is possible only after the

implementation.

The problem of blocking occurs when itinerary of MA is

static and order is fixed. In order to avoid blocking, the

user can also specify a list of alternative hosts at each steps

of the MA’s itinerary. If MA found one host malicious in

its itinerary, it may be migrated to an alternative host in the

itinerary.

If order is not fixed then in case of blocking MA may

migrate to any other trusted host of the itinerary and may

try to visit the malicious host after sufficient time till host

has been cleaned at become trustworthy again.

For some applications, the itinerary of MA is determined

dynamically by the MA itself. In this case, if MA is

blocked it finds some alternative host that offer the same

services and migrate to that host. If required it may visit the

malicious host again when it has been cleaned and trust

worthy again.

REFERENCES
[1] De Capitani di Vimercati, S.Foresti, S.Jajodia et al. Integrating

Trust Management and Access Control in Data Intensive Web

Applications,ACM Transactions on the Web (TWEB) 6,2, 1-44

(2012).

[2] Habib S., Ries S., Muhlhauser, M., Towards a Trust Management

System for Cloud Computing, In Proc. of IEEE 10th Int. Conf. on

Trust, Security and Privacy in Computing and Communications

(TrustCom'11). Changsha, China (2011)
[3] Patel, R.B. 2004. Design and implementation of a secure mobile

agent platform for distributed computing’, PhD Thesis, Department

of Electronics and Computer Engineering, IIT Roorkee, India, Aug.
[4] Pathak H., A Novel Hybrid Security Architecture (HSA) to provide

security to Mobile Agents and the Executing Host, Proceedings of

the International Conference on Communication, Computing &
Security Pages 499-502, Rourkela, 2011.

[5] Pathak H., K. Garg, Nipur, “CPN model for Hierarchical Fault

Tolerance Protocol for Mobile Agent Systems”, in proceedings
2008 International Conference of Networks (ICON 2008), New

Delhi, India, December 2008.

[6] Pathak H., K. Garg, Nipur, “Design, Validation, Simulation and
Parametric Evaluation of a Fault Tolerant Network Trading System

Using Mobile Agent” in Journal of Information and Operations

Management (JIOM), Vol 3, Issue 1. Feb 2012.
[7] Pathak H., K. Garg, Nipur, “Three Layered Hierarchical Fault

Tolerance Protocol for Mobile Agent System” in International

Journal of Scientific and Engineering Research (IJSER), Vol. 2
Issue 1 (2011).

[8] Pathak H., K. Garg, Nipur, “Performance Analysis of Hierarchical

Fault Tolerance Protocol for Mobile Agent Systems”, in Journal of
Computer Science (JCS), Vol.5,issue 2, pp 118-124 (2011).

	OLE_LINK5
	OLE_LINK6
	OLE_LINK7

