
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4512

ZERO WATERMARKING USING

SECTIONAL OBFUSCATION SCHEME AND

STEALTHY CODE OBFUSCATION

TECHNIQUE

Ms.R. Saranya
 1

Mrs . R.Arthy
2

PG Student, ANNA UNIVERSITY, Nodal Centre- Kamaraj College Of Engineering & Technology
1

Assistant Professor, Department of IT, Kamaraj College Of Engineering & Technology
2

Abstract: Stealing of Watermarks is a fashionable trend in the scientific field ,the most common medium for exchange

of information used is the plain text which suffers from tampering attacks. There are very limited techniques available

for plain text watermarking and authentication. The traditionally used methods are obfuscation and watermarking. In

order to overcome such limitation the concept of code obfuscation and zero watermarking are combined. The use of

opaque predicates as one of the building blocks of obfuscating transformation conceals the control flow of the program

in the protection of intellectual property. By this the ownership of the software products can be proved, which increases

the security level of the software to a greater extend.

Keywords: obfuscation, software security, zero water marking, authentication.

I. INTRODUCTION

A. General Information

Obfuscation, in general, describes a practice that is used to

intentionally make something more difficult to understand.

In a programming context, it means to make code harder

to understand or read, generally for privacy or security

purposes. A tool called an obfuscator is sometimes used to

convert a straight-forward program into one that works the

same way but is much harder to understand. Common

reverse engineering techniques rely on function and code

clarity when copying program code. Obfuscation creates

ambiguous code, which makes reverse engineering

difficult.

 Obfuscation methods are classified depending on

the information they target. Some simple transformations

target the lexical structure of the program while others

target the data structures or the control flow. Obfuscation

methods are further classified based on the kind of

operation they perform on the targeted information. Some

methods manipulate the aggregation of control or data,

while others affect the ordering. Some of the code

obfuscation methods are layout obfuscation, data

obfuscation (Storage obfuscation, Encode obfuscation,),

control obfuscation

B. Watermark Attack Methods

 Even though in static analysis the inputs are not

known, several global analyses succeed in extracting

information. Techniques include: constant propagation,

range propagation, etc. Also, techniques such as abstract

interpretation have been proven useful.

C. Various attack methods

 Even though in static analysis the inputs are not

known, several global analyses succeed in extracting

information. Techniques include: constant propagation,

range propagation, etc. Also, techniques such as abstract

interpretation have been proven useful.

D. Execution of attack methods

 One of the code obfuscation attack method need

ten groups of testing programs which are embedded with

watermark with those algorithms mentioned above. Then

the ten groups of testing programs will be attacked by

code obfuscation and each of these attacked programs will

be checked whether the watermark embedded into these

programs are damaged. Attack method needs the same

testing programs. In order to attack these testing programs,

a set of randomly selected instructions is embedded into

the testing programs.

II. GENERAL METHODS FOR OBFUSCATION

 An easy way to comply with the conference

paper General code obfuscation techniques aim to confuse

the understanding of the way in which a program

functions. These can range from simple layout

transformations to complicated changes in control and data

flow.

 The control flow transformations - used for

obfuscation can be described affecting the aggregation,

ordering or computations of the flow of control.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4513

 Aggregation transformation - breaks up

computations that are logically related and merges

computations that are not.

 Control ordering transformations - randomize the

order in which the computations are carried out.

 Computation transformations - insert new code or

make algorithmic changes to source application.

III. PE FILE FORMAT

MS-DOS Header

PE File Header

.text Section Header

.rdata Section Header

.debug Section Header

.txt Section

.rdata Section

.debug Section

Fig. 1. PE File Format Structure

 The Windows NT version 3.1operating system

introduces a new executable file format called the Portable

Executable (PE) file format. Fig. 1 shows the PE file

format structure.

 The term "Portable Executable" was chosen

because the intent was to have a common file format for

all flavours of Windows, on all supported CPUs.

 A module in memory represents all the code,

data, and resources from an executable file that is needed

by a process. Other parts of a PE file may be read, but not

mapped in (for instance, relocations). Some parts may not

be mapped in at all, for example, when debug information

is placed at the end of the file.

IV. OBFUSCATION QUALITY

Potency: Potency defines to what degree the transformed

code is more obscure than the original.

Resilience: Resilience defines how well the transformed

code can resist automated deobfuscation attacks. It is a

combination of the programmer effort to create a

deobfuscator and the time and space required by the

deobfuscator.

Stealth: Stealth defines how well the obfuscated code

blends with the rest of the program.

Cost: Cost is the execution time and space overhead in the

obfuscated code compared to the original code.

V. OBFUSCATION SCHEME

 Obfuscation is a transformation of program into

program, which can be understood as the special case of

data coding not for all. This transformation is done

without affecting the control flow of the program.

Obfuscation method is used to prevent others to

understand the program by changing the structural aspect

of the program or else by confusing workflow of the

program.

 Obfuscation of code is also done at the

disassembly phase. There are two methods of disassembly:

Static disassembly -,Dynamic disassembly

 Jump statements in assembly code have number

of instructions that jump between statements and the

position where it jumps is known as jump height. The

difference between two values of jump heights is called

jump distance. The range of jump height is called jump

range.

 Goals of obfuscation

 • Improve software security.

• Hard to reverse engineer code.

• Protects the owner’s intellectual property.

• Could also be used to hide malicious software.

VI. SECTIONAL OBFUSCATION PROCESS

 Sectional Obfuscation Scheme is a method of

obfuscation. Before embedding the watermarking text is

converted into ASCII and then to Binary format(32-bit) so

called as watermarking code table. The main workflow of

sectional obfuscation is shows in Fig. 2 as follows:

 First step is to find the code section of PE File

and Divide the code section into several shares. Then set j

= 1 and n equals the number of instructions of code

section.

 Accessing the separated share. Then acquired the

value of x from the code table. Divide the selected share

into several basic blocks.

 All these divided basic blocks are placed upside

down and mandatory jump statements should be added

into the inverted assembly code.

 The value of x is taken from the code table. If x

equals 0, the process jumps to WMArray where the jump

distance is recorded as π1.

 If x equals 1, the process will jumps to WMArray

where the jump distance is recorded as π2.If j = j + 1 then

the process should jump.If j is greater than n, the process

will end.

 To extract the embedded watermarking the above

obfuscated codes should be reversed in the same

sequential manner.

 So that the secret information can be revealed.

The information of watermark text which is not directly

embedded into the program is so called as zero

watermarking..

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4514

 Fig. 2. Sectional Obfuscation Process

VII.PROPOSED SCHEME

 The host text document is not altered to embed

watermark, rather the characteristics of text are utilized to

generate a watermark. As per the author choice the

selection of the keyword from the text is done .

Fig. 3. Generation of Waremark Key

 The random selection of the key information to

be embedded in the code section depends on the length of

preceding and next word length. The watermarking text

used in the existing scheme is of 32-bit.In the proposed

scheme the use of 40 bit is to make the process of

extracting the original text (deobfuscation) to be a more

tedious one.

 In the figure the selection of preceding and next

word along with the length, and the random choosing of

watermarking key is done.

 Except the extraction process the same sectional

obfuscation process is to be followed and further

continued with stealthy code process. The obfuscator

engine contains a large pool of code transformations

which are applied repeatedly to the input file until the

required obfuscation potency is achieved or the maximum

cost is exceed.

A. Dead code insertion

 Inserting dead code or do-nothing instruction

does not affect the execution of the original code and

creates different looking programs with the same

functionality. NOP can be composed of more complex

instructions that are never executed.

B. True Opaque predicates

 Opaque predicates (i.e. obfuscator that do not

belong to the original source code) are the main technique

for designing control altering transformations. Being able

to create opaque predicates which are difficult for a

deobfuscator to crack is a major challenge to the

obfuscator. True predicates PT is nothing but the dead

code should only be placed in the else block.

C .False Opaque predicates

 These opaque predicates are injected at

randomly selected location in the program. False

predicates PF where the execution path runs via false

branch.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4515

D. Equivalent instruction substitution

 Equivalent code substitution is the process in

which the given instruction block replaced with another

instruction block while keeping the same semantics. True

predicates PT is nothing but the dead code should only be

placed in the else block by substituting the instructions

.False predicates PF where the execution path runs via

false branch by substituting the instructions .

E. Transpose Algorithm

 Transposition or instruction permutation modifies

the order of execution of a program without changing the

semantics of the original one. This can be done only if

there is no existence of dependency among instructions.

The transposes of instructions is done by swapping

between two following instructions which is not affect the

flow of program. The output of stealthy code obfuscation

process is to be stored in a temporary file. Then

transposition process is applied to few of the instructions

which are randomly chosen from the output file of stealthy

code obfuscation process. Then the entire output will be

stored in the permanent file.

F. Obfuscation Efficiency
 If the disassembler fails to identify correctly the

fraction of instructions is defined as efficiency of

obfuscation called as Confusion Factor (CF).Let A be the

set of all actual instruction addresses encountered when

the program is executed, and let P be the set of all

perceived instruction addresses produced by disassembler,

then CF = |A – P| / |A|. The calculation of CF for basic

blocks and functions to determine whether the errors in

disassembling instructions are clustered in a small part of

the code The outcome result proves that it is too tedious to

disassemble programs even only some instructions have

been obfuscated.

VIII.CONCLUSION

 Watermark is used to prove the copyright of

software. But it would lose the function if the watermark is

damaged by illegal means. The obfuscation scheme is used

to reduce the reuse of the code. The Zero-watermarking

can increase the performance of security to greater extents.

The sectional obfuscation scheme which is used made the

reverse engineering process to be a difficult one.The

combination between watermark and obfuscationand the

implementation of stealthy code concept is even more

secure for protecting the watermark information and make

the reverse engineering even more difficult to perform.

 Future work will investigates the most advanced

opaque predicates techniques in order to find out new

ways to enhance the obfuscation process.

REFERENCES

[1] [1] Guangxing Xu, Guangli Xiang, “AMethod of Software
Watermarking,” 2012 International Conference on Systems

and Informatics (ICSAI2012)

[2] [2] Saad M. Darwish, Shawkat K. Guirguis, Mohamed S.
Zalat, “Stealthy Code Obfuscation Technique for Software Security,”

University of Alexandria.

[3] [3] Zunera Jalil, Anwar M. Mirza, Maria Sabir, “Content based
Zero-Watermarking Algorithm for Authentication of Text Documents,”

(IJCSIS) International Journal of Computer Science and Information

 Security, February 2010.
[4] [4] Gang Chen, “Research on Software Watermark Based on PE

File,” Hunan University, June 2008.

[5] [5] Hu Chaoju, Wang Xuning, “Zero Watermark Protocol Based
on Time-stamp and Digital Signature,” 2009 International

 Forum on Information Technology and Applications.

[6] [6] Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di
Ma, Qiuyun Shao, Yi Zhang, “Experience with Software

Watermarking,” 2000 Purdue University, West Lafayette.

[7] Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo
,Falcarin,Filippo Ricca,MarcoTorchiano, Paolo Tonella, Fondazione

Bruno Kessler, Unita, Politecnico di Torino, “The Effectiveness of Source

Code Obfuscation: an Experimental Assessment,” ICPC 2009.
[8] [8] Maria Chroni, Stavros D. Nikolopoulos, “An Embedding

Graph-based Model for Software Watermarking,” University of
 Ioannina.

[9] [9] Mila Dalla Preda, Roberto Giacobazzi, “Control Code

Obfuscation byAbstract Interpretation,” Proceedings of the
Third IEEE International Conference on Software Engineering

and Formal Methods, 2005.

[10] [10] Boaz Barak, Oded Goldreich, Russell Impagliazzo,
Steven Rudich,Amit Sahai, Sali Vadhan, Ke Yang, “On the

(im)possibility of obfuscating programs,” In Proceedings of CRYPTO

2001.
[11] [11] Cong Jin, Xiao-Liang Zhang, Yan Chao, Hong-Feng Xu,

“Behaviour Authentication Technology using Digital

Watermark,” 2008 International Conference on Multimedia and
Information Technology.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4516

BIOGRAPHIES

Saranya.R received her

B.E.(CSE) degree from RVS

College of Engineering and

Technology.Dindugal in 2010 and

pursuing M.E.(CSE) degree at

ANNA UNIVERSITY, Nodal

Center- Kamaraj College Of

Engineering & Technology.Her

area of interest are Network

Security and Software Security.

Arthy.R received her

M.E.(CSE) degree from Raja

College of Engineering and

Technology, Madurai and

currently pursuing her Ph.D

degree. Her research area is 3D

Image Security.

