
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6406

Detection of Optimal Refactoring Plans For

Resolution of Code Smells

PANDIYAVATHI.T
1
, MANOCHANDAR.T

2

Student M.E. (SWE), Anna University, Chennai, India1

Assistant Professor, VRS College of Engineering & Technology, Arasur, India2

Abstract: Bad smells can be detected using various kinds of automated tools. The problem behind this is clear, where

the smell being refactored may have dependency in increasing or resolving some other kind of smell which in turn

results in increased effort and time. A smell being resolved may affect the presence of an existing smell or introduces

some more conflicts into the system. The works discussed in the literature leads to lot of human effort and enormous

amount of maintenance time. In order to reduce the manual work load and to obtain the better source code for easy

maintenance and to obtain a better refactoring sequence this work proposes optimal refactoring plans that enhances

detection and sequencing of bad smells. The selected code smells are sequenced to avoid RIPPLE EFFECT. The
refactoring methods that have to be applied to the source code are also ordered based on the fitness criteria using a

genetic algorithm.

I. INTRODUCTION

The design of software systems can exhibit several

problems which can be either due to inefficient analysis

and design during the initial construction of the software

or sometimes may be due to software ageing since

software quality degenerates with time. According to

Fowler[1], design problems appear as ―bad smells‖ at code

or design level and the process of removing them is called

refactoring where the software structure is improved
without any modification in the behavior. It can be briefly

defined as ―Restructuring of internal structure of object

oriented software to improve the quality while the

software’s external behavior remains unchanged‖ –

Fowler[1]

Refactoring improves the design of software and makes

software easier to understand. It also helps us to find bugs.

Bad smells can be detected using various kinds of

automated tools. The problem behind this is clear, where

the smell being refactored may have dependency in

increasing or resolving some other kind of smell which in
turn results in increased effort and time. A smell being

resolved may affect the presence of an existing smell or

introduces some more conflicts into the system.

PROPOSED WORK

In our approach only one tool is used for calculating the

metrics. Based on the metrics of the given source code,

defects in the source code is detected and the stored

refactoring list elements are called based on the detected

smell. This sequence is given as input to the genetic

algorithm which gives the proper ordered sequence to
perform refactoring which reduces human effort and also

gives optimal sequence for refactoring. Complexity of the

current approach lies in finding the fitness function based

on which the crossover and mutation in the genetic

algorithm are done.

It is suggested that often manual refactoring will be the

most effective one among all the others. Since it increases

the time factor, we detect the smells using different

strategy and finally apply the sequence of refactoring

methods to the code which involves manual checking

along with the defect resolution.

II. FEASIBILITY ANALYSIS

Using Development history is a resolution technique

where the past refactoring can be used to do the current

plans since there is higher probability of the already
refactored code to inject new smells. The technique used is

multi-objective evolutionary algorithm that adapts non-

dominated sorting genetic algorithm (NSGA-II)[2].

A Monitor-Based Instant Software Refactoring

framework[3] is developed to conduct more refactoring in

which changes in the source code are instantly analyzed by

a monitor running in the background. If smells are

introduced, monitor by itself invokes smell detection tools

to inform the developer to resolve the smells. This

facilitates instant refactoring decisions being made as soon

as the smell is been detected. This solution is found to
reduce the total number of smells by 51 percent.

Identification of generalization refactoring [4] in the code

allows to related classes, shared functions with interfaces

and implementations in java. The refactoring rules can be

indentified using conceptual relationship, implementation,

similarity, structural correspondence and inheritance

hierarchies. This helps in resolving the smells that are

highly related, using the tools generated using this
approach.

BAD SMELLS

The key issue can be solved by a kind-level scheme that

arranges the detection and resolution sequences of

different kinds of bad smells. Arranging detection and

resolution sequences[5] can be done by analyzing the

relationship among different bad smells. Based on the

analyzed sequence, smells are detected and resolved using

several kind of automated tools like JDeodorant(Feature

envy), PMD(duplicate code) based on the type of smell.

This greatly minimizes human effort but the tool may miss

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6407

some bad smells in some cases. Since there exists only 8
important code smells being analyzed, in the proposed

system some more smells can be introduced and

sequencing is done to improve the quality of the code.

Detection tool can be used in detecting a specific kind of

smell. Comparison between the refactoring without

sequencing and with sequencing can be made to confirm

that the proposed approach provides better results than

simply refactoring the code without considering the

relationship between the smells. Batch model of

refactoring is used where the system is thoroughly

refactored at one attempt. Metrics can also be calculated to

look into the results of the proposed system. This approach
can be evaluated on application in future work for

validation. In the proposed system smells namely move

method, move field and dead code can be added as

additional smell detection and evaluation.

To specify what kind of source code should be

restructured, Fowler [1] proposed the concept of bad

smells. They proposed and described 22 bad smells in

object-oriented systems. They also associated refactoring

rules with these bad smells, suggesting how to resolve

these bad smells. Bad smells in specific domains have also
been proposed. Srivisut and Muenchaisri defined some

bad smells in aspect-oriented software, and proposed

approaches to detect them. Van Deursen Test Smells

indicating problems in test code. The impact of bad smells

has also been analyzed.

Lozano[5] assessed the impact of bad smells, i.e., the

extent to which different bad smells influence software

maintainability. They argued that it is possible to analyze

the impact of bad smells by analyzing historical

information. With the impact in mind, it is possible to

assess code quality by detecting and visualizing bad
smells. Van Emden and Moonen[6] implemented a code

browser for detecting and visualizing code smells, and

assessed the quality of code according to the visual

representation. Detecting bad smells is critical and time-

consuming. Therefore, automating detection is essential.

Tsantalis[7] proposed an approach to identifying and

removing type-checking bad smells which is implemented

in an prototype tool named JDeodorant. Fokaefs[8]

proposed an Eclipse plug-in to identify and resolve feature

envy bad smells. Clones, one of the most common bad

smells, have been investigated for a long time, and dozens
of detection algorithms have been proposed to detect them.

Moha proposed a language for formalizing bad smells, and

a framework for automatically generating detection

algorithms for the formalized bad smells.

RELATIONSHIPS AMONG BAD SMELLS

Relationships among bad smells have also been

investigated. Wake classified bad smells into two

categories: bad smells within classes and bad smells

between classes. Meszaros [10] classified test smells into

code smells, behavior smells, and project smells.

Mantyla[11] analyzed the correlations among bad smells
by investing the frequency with which each pair of bad

smells appears in the same module. They found that bad

smells within the same category are more likely to appear
together. The work aimed to simplify the comprehension

of bad smells, instead of refactoring activities.

Pietrzak and Walter[12] investigated the intersmell

relationships to facilitate the detection of bad smells. They

argued that detected or rejected bad smells might imply

the existence or absence of other bad smells. Their work

aimed to simplify the detection of bad smells, whereas our

work focuses on the detection and resolution sequences of

different kinds of bad smells.

GENETIC ALGORITHM
Genetic algorithm was first proposed by Goldberg et al in

1989. In the computer science field of artificial

intelligence, a genetic algorithm is a search heuristic that

mimics the process of natural selection. This heuristic is

routinely used to generate useful solutions to optimization

and search problems. To insure the detection of

maintainability defects, several automated detection

techniques have been proposed by Moha. The vast

majority of these techniques rely on declarative rule. In

these settings, rules are manually defined to identify the

key symptoms that characterize a defect. These symptoms
are described using quantitative metrics, structural, and/or

lexical information. For example, large classes have

different symptoms like the high number of attributes,

relations and methods that can be expressed using

quantitative metrics.

Beside the previous approaches, one notices the

availability of defect repositories in many companies,

where defects in projects under development are manually

identified, corrected and documented. However, this

valuable knowledge is not used to mine regularities about

defect manifestations, although these regularities could be
exploited both to detect and correct defects.

In this paper, we propose to overcome some of the above-

mentioned limitations with a two-step approach based on

the use of defect examples generally available in defect

repositories of software developing companies:

(1) Detection-identification of defects, and

(2) Correction of detected defects.

Instead of specifying rules manually for detecting each

defect type, or semi automatically using defect definitions,

we extract these rules from instances of maintainability

defects. This is achieved using Genetic Programming

(GP).

We generate correction solutions based on combinations

of refactoring operations, taking in consideration two

objectives:

(1) Maximizing code quality by minimizing the

number of detected defects using detection rules

generated
(2) Minimizing the effort needed to apply refactoring

operations.

Thus, we propose to consider refactoring as a multi-

objective optimization problem instead of a single-

objective approach.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6408

In all these previous work discussed above, we have
briefly discussed the resolution sequences of bad smells,

but no evaluation or discussion was presented. In this

paper, an approach known as Genetic algorithm is

presented to evaluate the metrics through which the code

is going to be analyzed. Furthermore, the need for

resolution sequences is illustrated.

III. REFACTORING

STEPS INVOLVED
1. Perform pair wise analysis among each selected

code smells.

2. Draw directed graph based on the analysis made
above

3. Apply topological sorting to obtain ordered code

smells.

4. Generate detection rules using combinations of

metrics and thresholds

5. Collect refactorings methods to be processed after

the defect detection

6. Generate/ frame list of possible refactoring

methods like pull up, move method, extract

method

7. Apply natural evolution techniques like genetic
algorithm with input as the outcomes of steps

4,5,6

8. Perform crossover and mutation along with the

elitism property in the above algorithm

9. Obtain Optimal solution with sequenced

refactoring plans

Module 1- Sequencing Code Smells

Study of smells selected for the problem and analyzing its

complexities, Pair wise analysis, Generate DAG and

Sequence the code smells using topological sorting

algorithm

Module 2- Detection Of Smells Using Automated Tools

Select fragments of code, Inject smells into the code, Use

automated tools to detect the smells in the code where

PMD detects dead code, duplicate code, long method, long

parameter list and Checkstyle detects feature envy and

finally check the ease of tools for detection of the code

smells.

Module 3- Metric Calibration And Refactoring Plans

It aims on implementing our current ideas on detecting the
code smells. We use a tool named ―metrics‖ which is an

eclipse plugin to find the metrics in the code which is

followed by metrics calibration where the

detected/calculated metrics is compared against the

threshold values. Based on the result appropriate method is

called and code smell is detected. If there is no smells in

the code, then the resultant array will be empty. This array

will be given as input to the next module. Initially generate

Design defects rules and then generate list of refactoring

plans

Module 4- Extracting Optimal Refactoring Solution
Use the results from module 3 as input to the Genetic

Algorithm. Encoding involves conversion of Array to a

feasible input value in which the processing is going to be
done and Selection involves selecting individuals for the

population using tournament selection method or Roulette

wheel selection and finally evaluate the individuals

through fitness function.

a. Perform crossover

b. Perform mutations

c. Generate optimal refactoring solution

Fig. Architecture Diagram

Fig. Genetic Algorithm

Fig. Generated Sequence

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6409

Sequenced Code Using Topological Sorting:
Dead code Duplicate codeFeature envylong

method god class long parameter list

IV. DETECTION OF CODE SMELLS USING

AUTOMATED TOOLS

Tools used: pmd,checkstyle

1. Inject smells into the code

2. Use automated tools to detect the smells in the

code

Fig. Output Of Automated Tool(Long Method & God

Class)

Flaws in using tools:

1. Tools used here can find the code smells that

exist in the code. But not all the code smells are

detected using a single tool

2. There are more than 22 code smells as proposed

by Fowler and plug-in can detect not more than 5

smells in a code

Steps:

a. ―Metrics‖ runs on Eclipse IDE, where the result

from this tool is taken as input to our work.
b. We use netbeans to run our java program. In our

program design rules are generated by setting

threshold values to each metric value.

c. Give the output generated from the tool as input

to the program

d. Design rules with conditional statements are

checked and appropriate refactoring solution is

stored to the array

e. Null value is pushed into the array if the metric

value doesn’t exceeds the threshold value

f. Resultant array is the input to be fed into the
genetic algorithm

V. EXTRACTING OPTIMAL REFACTORING

SOLUTION

The solution generated using the genetic algorithm is

applied to the source code by using Eclipse IDE to do the

corresponding refactorings. Genetic Algorithms (GAs) are

an iterative approach which is described as analogous to

evolutionary processes for solving search and

optimization problems. We find the individuals and

combine them to create a population with higher fitness.

Sample Input: [EM, EC, MM, PDM, 0]

10110111000101100110110110010000011000010110010

0000100110110011

Sample Output:
11110000000000000000000000000000000000011111101

0010100100101101000

Problem

Problem exists in the algorithm since the input is

converted to binary strings, after the computation of the

algorithm on the bit strings, due to crossover and mutation

the number of strings and the sequence is changed.

Because of this, illegal results are produced which has

been found on latter stage. Due to this limitation, studies

are done and an crossover technique which avoids this

problem is proposed.

Fig. One-Point Crossover

Solution
The crossover technique which avoids the production of

illegal children is analyzed and found to be PARTIAL

MAPPED CROSSVER technique.

Fig. Partially-Mapped Crossover

VI. CONCLUSION

In this work, the optimal sequence for refactoring is

generated using genetic algorithm. Some problem exists

while doing Encoding and Crossover in genetic algorithm.

However the problem will be handled using techniques

available. In previous work, scheduling of the code smell

is done. Refactoring of the code smells solely depends on

the tool and in case of existence of code smells ever after

refactoring leads in increasing the human effort.

To avoid these problems we amended,

1. Topological sorting algorithm for sequencing the

major selected code smells

2. Automated tools to define that the usage of tools has

many flaws which has to be solved

3. Metric calibration where the metrics calculated from

the source code is used for detecting the defects and

finding their related refactoring methods from the list

of refactoring methods stored in an array list

4. Genetic algorithm which takes the array as input and

thereby encode, select individual, do crossover and
mutation and finally produces the optimal solution to

the problem. Number of iterations needed for getting

the optimal solution is also obtained using this

approach.

5.1. LIMITATIONS

We have encountered a problem with the illegal child

generation in the genetic algorithm. The main reason for

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6410

encoding from array of strings to bit strings is for easy
computing of genetic operators and during study it is

found that for optimal solution generation using binary

encoding is the better way. But this condition holds bad

for our solution domain. This resulted in rework of the

genetic algorithm by assigned some char values or

numbers to the refactoring methods.

Problem is therefore analyzed and the crossover technique

which produce legal children is found to be partially-

mapped crossover technique and later on this technique

is been implemented and results are obtained along with

the fitness values.

SAMPLE INPUT: EM,EC,0,0,MM
EXPECTED OUTPUT: 0,EC,0,EM,MM

ACTUAL OUTPUT: 0,EC,EM,0,MM

VII. RESULTS

INDIVIDUAL FITNESS
NUMBER OF

OCCURENCE

30214 108.75 14

31204 105.62 15

02134 105.62 18

32104 95.83 8

12304 103.93 9

03214 103.93 12

21034 105.07 4

12034 108.75 4

01234 95.83 3

30124 105.07 6

12034 108.75 4

Fig. Output Of Genetic Algorithm

tp(correct result) fp(unexpected)

6 3

fn(missing)
tn(correct absence of

result

1 4

ANALYSED RESULTS

1. Precision: fraction of retrieved docs that are

relevant = P(relevant|retrieved) Precision P =

tp/(tp + fp) P=66.66

2. Recall: fraction of relevant docs that are

retrieved= P(retrieved|relevant) Recall R = tp/(tp

+ fn) R=85.71

3. Accuracy: A=(tp+tn)/(tp+tn+fp+fn) = 71.428 f-
score= 2*(P.R)/(P+R) = 74.99

GRAPH REPRESENTATION

Fig. Cause Of Illegal Children

Fig. Usage of Partially mapped crossover

REFERENCES
[1] Martin Fowler, Kent Beck (Contributor), John Brant (Contributor),

William Opdyke, don Roberts(2002), ―Refactoring: Improving the

Design of Existing Code‖.

[2] Ali ouni, Marouane Kessentini, Houari Sahraoui, Mohamed Salah

Hamdi, ―The Use of Development History in Software Refactoring

Using a Multi-Objective Evolutionary Algorithm‖, proc.

GECCO’13 pages 1461-1468 and ACM 2013.

[3] Hui Liu, Xue Guo and Weizhong Shao, ―Monitor-Based Instant

Software Refactoring‖, IEEE Transactions of Software Engineering

2013.

[4] Hui Liu, Zhendong Niu, Zhiyi Ma, Weizhong Shao, ―Identification

of generalization refactoring opportunities‖, Automated Software

Engineering: Volume 20, Issue 1 (2013), Page 81-110

[5] A. Lozano, M. Wermelinger, and B. Nuseibeh, ―Assessing the

Impact of Bad Smells Using Historical Information,‖ Proc. Ninth

Int’l Workshop Principles of Software Evolution: In Conjunction

with the Sixth ESEC/FSE Joint Meeting, pp. 31-34, 2007.

[6] E. van Emden and L. Moonen, ―Java Quality Assurance by

Detecting Code Smells,‖ Proc. Ninth Working Conf. Reverse Eng.,

pp. 97-106, 2002.

[7] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, ―Jdeodorant:

Identification and Removal of Type-Checking Bad Smells,‖ Proc.

12th European Conf. Software Maintenance and Reeng., pp. 329-

331, Apr. 2008.

[8] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, ―Jdeodorant:

Identification and Removal of Feature Envy Bad Smells,‖ Proc.

IEEE Int’l Conf. Software Maintenance, pp. 519-520, Oct. 2007.

[9] M. Mantyla, J. Vanhanen, and C. Lassenius, ―Bad Smells—

Humans as Code Critics,‖ Proc. IEEE 20th Int’l Conf. Software

Maintenance, pp. 399-408, Sept. 2004.

[10] G. Meszaros, xUnit Test Patterns: Refactoring Test Code. Addison-

Wesley, 2007.

[11] M. Mantyla, J. Vanhanen, and C. Lassenius, ―A Taxonomy and an

Initial Empirical Study of Bad Smells in Code,‖ Proc. Int’l Conf.

Software Maintenance, pp. 381-384, 2003.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6411

[12] B. Pietrzak and B. Walter, ―Leveraging Code Smell Detection with

Inter-Smell Relations,‖ Proc. Seventh Int’l Conf. Extreme

Programming and Agile Processes in Software Eng., pp. 75-84,

June 2007.

[13] T. Mens, G. Taentzer, and O. Runge, ―Analysing Refactoring

Dependencies Using Graph Transformation,‖ Software and Systems

Modeling, vol. 6, no. 3, pp. 269-285, Sept. 2009.

[14] H. Liu, L. Yang, Z. Niu, Z. Ma, and W. Shao, ―Facilitating

Software Refactoring with Appropriate Resolution Order of Bad

Smells,‖ Proc. Seventh Joint Meeting of the European Software

Eng. Conf. and the ACM SIGSOFT Symp. the Foundations of

Software Eng., pp. 265- 268, 2009.

[15] http://www.eclipse.org/downloads

[16] http://pmd.sourceforge.net/cpd.html

[17] Core Java vol-1 Fundamenals,Eighth edition by Cay S.Horstmann

and Gary Cornell

[18] Hui Liu, Zhiyi Ma, Weizhong Shao and Zhendong Niu, ―Schedule

of Bad Smell Detection and Resolution: A New Way to Save

Effort‖, IEEE Transactions on Software Engineering, vol.38, no.1,

pp.220-235, Jan.-Feb. 2012

[19] http://www.myreaders.info/html/artificial_intelligence.html

[20] Integrating Code Smells" Detection with Refactoring Tool, a report

submitted by Kwankamol Nongpon August 2012

[21] Tools - http://www.Sourceforgenet.com- pmd, checkstyle

[22] Automated refactoring: a step towards enhancing the

comprehensibility of legacy software systems by Isaac D. Griffith.

BIOGRAPHIES

 T. PANDIYAVATHI was born in

Tamilnadu, India in 1991. She moved to

Villupuram where she completed her

Schooling by 2008 and Bachelor of Degree

in University college of Engineering

Villupuram(A constituent college of Anna

university Chennai) in 2012. She is

pursuing Masters in Software Engineering in CEG, Anna

University Chennai. Software quality, Agents, Data

mining and Data structures are her interests.

T. MANOCHANDAR was born in

Tamilnadu, India in 1988. He received

B.E. in Electronics and Communication

Engineering from Kamban Engineering

College (A constituent college of Anna

University, Chennai) in 2009 and M.E. in

Communication Systems from

Prathyusha Institute of Technology and Management,

Tiruvallur (A constituent college of Anna University,

Chennai)in 2012.He is interested in the fields of Wireless
Communication, Neural Networks, Image Processing and

Embedded Systems. He is an associate member of the

IRED and life member of ISTE and IAENG. He is

Assistant Professor of Electronics and Communication

Engineering in VRS college of Engineering and

Technology, Arasur (A constituent college of Anna

University, Chennai).

