
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 3, March 2014

Copyright to IJARCCE www.ijarcce.com 5806

Real Time Communication Simulator

Prof. Geeta Patil
1
, Amit Soni

2
, Vinay Singh

3
, Sumit Dasila

4
, Shashi Mohan Kumar

5

M.E (E & TC), Information Technology, Army institute of Technology, Pune, India1

Information Technology, Army Institute of Technology, Pune, India2,3,4,5

Abstract: To develop communication simulator over wired network by modifying UDP protocol. The scope of work is

to improvise the reliability, latency of system during data (like text, audio, video) transfer to make it work for real time

applications. A communication system for robotics application should allow fast exchange of real-time data for low

level robot control and large amount of data for high level algorithms like intelligent vision or map building. Ethernet

seems to be the perfect candidate for the low level communication interface because of its large diffusion; high

bandwidth and low cost .Real time system are being use increasingly in control applications such as in automobiles,

aircraft and process control. Real-time communication protocols are designed in order to satisfy basic requirements of
these systems such as reliability, safety and in time message delivery. Time update of real-time data is crucial

requirement of such critical systems which has to be facilitated by these protocols. RDM (Round Data Mailer) and

RDM+ are two new protocols that have been designed to fulfill the requirements of distributed real-time systems. The

project is useful to achieve real time application in many things like audio, video communication.

Keywords: Communication, Simulator, ROV, HMI

I. INTRODUCTION

Fast and reliable communications is a basic requirement

in almost all modern applications, but the real time

systems take it to extreme and require real time responses

from the network. In some cases, the requirements are so

tough that may require special hardware to achieve

desired performance. During the last decade, new

technologies have emerged to support the growing

demand, but their prices are high and availability is low.
As a result, most of the systems are still using TCP/IP

protocols stack over Ethernet backbone. Moreover, most

of the programmers are still developing with well-known

synchronous sockets API. This article explores usage of

these dominating technologies in the real time systems

and shows how to design and develop communications

within such systems. In particular, it proposes reliable

protocol over UDP transport layer that gains less than

one millisecond average round trip time (RTT) and

processes dozens of thousands of messages every second

at each and every port in network.

Most earlier work in the area of supporting real-time
communication over Ethernet focused on modifying the

Ethernet MAC sub-layer so that a bounded channel-

access time may be achieved, thus making hard real time

communication possible. These approaches are very

costly compared to the widely-used current Ethernet

standard. In the quest for real-time communication over

Ethernet, several techniques were developed and used by

both industry and academia, some of which are briefly

referred to in this section, grouped according to their

main features. CSMA/CD based protocols achieve real-

time behavior over shared Ethernet relying solely on the
original CSMA/CD contention resolution mechanism [1],

taking advantage of the fact that the probability of

collision between concurrent nodes is closely related to

the traffic properties such as the bus utilization factor,

message lengths and burstiness. In CSMA/CD

mechanism, when an application requests for a frame and

if at that time bus is free then only the network interface

cards (NICs) carry out frame transmission. As soon as

transmission is started, NICs continue sensing the bus for a

time slot to detect a collision. If it occurs, all the stations

abort the ongoing transmission, issue a jamming signal, and

wait for a random time interval before repeating the

process. An exponentially increasing wait time is used to

reduce the probability of chained collisions on heavy loaded

networks.

Real time networking is a non-easy task, so before move
any further, system connectivity requirements must be

analyzed. The right way to do it is to map and classify

traffic in the system. First classification to be made is

messages sizes and their latency requirements. In many

cases, these two parameters are sufficient to choose

transport protocols and network topology.

We would be dealing with two modules for the real time

communication as mentioned below:

Human machine interface (HMI) is the unit that is

responsible for displaying the interface to interact with the

ROV via System Module.

Remotely Operated Vehicle (ROV) receives the messages

from Communication Module and perform required task.

As packet transmission using TCP takes much time we are

going to use UDP transmission, but UDP transmission is

not reliable. So, we need to exploit UDP and make it

reliable to fulfill the following features: Low Latency,

Receive and deliver message to application as soon as

possible, Send application message as soon as possible,
Reliability, Avoid losing Message, In case of lost message,

detect and recover it (retransmission of the message).

II. PROCESS DEVELOPMENT

Sending Module:

When the sending operation is performed by application,

the protocol engine does the following. First it assigns ID to

the message and passes it to the sending module which, in

turn, transmits the message to its destination. Then it adjusts
retransmission time out to the message and pushes it into

queue of acknowledge pending messages (there is queue per

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 3, March 2014

Copyright to IJARCCE www.ijarcce.com 5807

channel).Whenever retransmission time out of the

message expires, the protocol engine retransmits the

message (hands it over to the sender module) and sets a
new time out for the message. If acknowledge is

received, the protocol engine is notified about it by

receiver module. It examines the acknowledge pending

messages and if acknowledge ID matches one of them, it

removes the message from the queue and notifies

application about successful delivery of the message (if

application requested such notification). Figure 3.1

shows flow chart of outgoing messages processing in

protocol engine. The idea is quite simple. In order to

know if message has arrived to its destination, it must be

acknowledged by the receiver. The sender is storing the
message in its memory as long as it is waiting for

acknowledge. Once it gets acknowledge, the message can

be discarded. In case the message is not acknowledged

during some period of time, it must be retransmitted.

The UDP-RT protocol defines maximum message delay

as a time that application permits for message delivering.

Message latency is the actual time that it takes to transmit

message; its value depends on network hardware and

peers operating systems behavior. We assume that the

maximum message delay is significantly bigger than

average message latency and there is enough time for

retransmissions. As a result, the timeout value of the
retransmission timer becomes the most important

parameter in the protocol configuration. To set a

reasonable retransmission timeout, sender calculates

average message RTT.

It writes timestamp into message header and receiver

copies the timestamp into corresponding ACK message,

so the sender can calculate the RTT upon acknowledge

receiving. Given the average RTT, the retransmission

timeout could be set to average (RTT) +, where a

compensation for RTT jitter is. Since the distribution of

messages RTT-s could be considered as normal, the
could be set to 2*, which covers over 97the average RTT

retransmission model works well as long as number of

channels is relatively small and losses of messages are

sporadic over time and channels.

Fig 1: Message Retransmission Timer

Since the distribution of messages RTT-s could be

considered as normal, the could be set to 2*, which

covers over 97the average RTT retransmission model
works well as long as number of channels is relatively

small and losses of messages are sporadic over time and

channels. Indeed, if some random message is lost, the

protocol will retransmit it after average (RTT) + timeout.

Now consider a situation where message is lost over and
over again. Once it exceeds its maximum message delay

value, the protocol should not attempt to retransmit the

message and, instead, proceed according to the message

dropping policy setting. The setting allows application to

configure the UDP-RT behavior for expired messages; the

protocol can either silently discard these messages or

declare system failure. By default, sender is starting DATA

messages ID-s from zero and assigns IDs to the following

messages in increasing order. The receiving side propagates

the ID along with the message to the application.

Fig 2: Resetting Message Numbering

The application may reset the counter to any value any

time. The reset feature is usually used by application to start

new processing sequence or prevent messages ID overflow.

When application asks to reset ID counter, the protocol

engine discards all acknowledge pending messages and

waits enough time to allow the system to clean itself up

from already sent messages. The waiting time is defined by

reset waiting time channel setting. Then the sender issues

RESET message. The receiver cleans up the heap of

received messages and resets receiving ID counter to the

requested value. The RESET message is acknowledged in
the same way as DATA messages. The RESET command is

also propagated to receiving application, so the application

could properly handle the RESET notification. For

example, it may request RESET from its protocol engine

and, thus, reset traffic in both directions on the given

channel.

Fig 3: Receiving Module

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 3, March 2014

Copyright to IJARCCE www.ijarcce.com 5808

Fig 4: Sending module

Receiving Module:

The receiver module passes received messages to the

protocol engine. If this is an acknowledge message then
it is processed as described in the previous section. If this

is a data message then the protocol engine must

acknowledge it. So it generates acknowledge message

and passes it to the sender module. Then it stores the

received message till it is requested by application.

II. EXPERIMENTAL RESULTS
Develop a real time communication protocol simulator:

Simulating a communication module with features like

Simplifies debugging and testing makes it economically

feasible. Improving and enhancing communication

features like: Latency, Reliability. Main objective to be

achieved are: Simulate a protocol engine, Decrease

latency to avoid delays, Increase reliability.

UDP modify reason?

To add features like: Packet loss detection,

retransmission of lost packets, acknowledgement,

ordering of messages, maintaining Message priority.

By modifying UDP, we will be giving the UDP features

of TCP thereby keeping the features of UDP. So, we can

provide real time constraint for the message being

transferred from the sending module to receiving module.

We proposed the idea of making the UDP reliable along

with its speed which it already delivers in communication
between two modules.

UDP modify?

Assign priorities to messages, Implement sequencing of

packets, Implement acknowledgement queue, Implement

sending queue, Implement receiving queue.

Maintain a priority queue at ROV: If two commands

receive at the same time, execute one with lower priority.

If lost packet arrive at same time.

Fig 5: Remotely Operated Vehicle

Fig 6: Human Machine Interface

III. CONCLUSION

To develop communication simulator over wired network

by modifying UDP protocol. The scope of work is to

improvise the reliability, latency of system during data (like

text, audio, video) transfer to make it work for real time

applications.

ACKNOWLEDGEMENT

First of all I would like to express our profound sense of

gratitude towards our guide Miss Nirja Thakur, Defence

Research and Development Organization, for his valuable

guidance, support and encouragement throughout the period

this work was carried out. His readiness for consultation at

all times, his educative comments, his concern and

assistance even with practical things have been invaluable. I

would also like to convey ours sincere gratitude and

indebtedness to our H.O.D. Mrs. Sangeeta Jadhav,
Department of Information Technology, Alandi Road,

Dighi Hills, who bestowed their efforts and guidance at

appropriate times without which it would have been very

difficult on our part to complete the seminar work. I also

thank to the Dr. V.P. Gosavi, Principal of Army Institute of

Technology for providing me all the necessary facilities to

carry out the seminar work.

REFERENCES
[1] Paulo Pedreiras, Paolo Gai, Lus Almeida, and Giorgio C. Buttazzo,

\FTT-Ethernet: A Flexible Real-Time Communication Protocol That

Supports Dynamic QoS Management on Ethernet-Based Systems",

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.

1, NO. 3, AUGUST 2005.

[2] Abdelhamid Helali, Adel Soudani, Salem Nasri, Thierry Divoux, \An

approach for end-to-end QoS and network resources management",

Computer Standards Interfaces 28 (2005) 93 108.

[3] Seok-Kyu Kweon and Kang G. Shin, “Achieving Real-Time

Communication over Ethernet with Adaptive Traffic Smoothing",

Real-Time Technology and Applications Symposium, 2000.

[4] Paolo Ferrari, Alessandra Flammini, Daniele Marioli, and Andrea

Taroni,\A Distributed Instrument for Performance Analysis of Real-

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 3, March 2014

Copyright to IJARCCE www.ijarcce.com 5809

Time Ethernet Networks", IEEE TRANSACTIONS ON

INDUSTRIAL INFORMATICS, VOL. 4, NO. 1, FEBRUARY

2008.

[5] J. Loeser, H. Haertig, \Low-latency hard real-time communication

over switched Ethernet", in: Proceedings of the 16th Euromicro

International Conference on Real-time Systems (ECRTS2004),

Catania, Italy, June 30 July 2012.

[6] D. Ferrari, D.C. Verma, \A scheme for real-time channel

establishment in wide area network", IEEE Journal on Selected

Areas in Communications 8 (3) (1990) 368379.

[7] Heejo Lee. ,Toda, K. , Jong Kim ,Nishida, K. , Takahashi, E. ,

Yamaguchi, Y., \Performance comparison of real-time

architectures using simulation", Real-Time Computing Systems

and Applications, 1995. Proceedings. Second International

Workshop, pp-150-157.

http://www.ijarcce.com/

	INTRODUCTION
	II. PROCESS DEVELOPMENT
	EXPERIMENTAL RESULTS
	CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

