
ISSN (Online) : 2278-1021 

 ISSN (Print)    : 2319-5940 
  International Journal of Advanced Research in Computer and Communication Engineering 

  Vol. 3, Issue 8, August 2014 
 

Copyright to IJARCCE                                                                               www.ijarcce.com                                                               7665 

An ALU Based Online BIST for Varying Word 

Widths of RAM 
 

B.Niharika
1
, Rani Rajesh

2
 

Student, Electronics and Communication Department, Stanley College of Engineering, Hyderabad, India1 

Associate Professor, Electronics and Communication Department, Stanley College of Engineering, Hyderabad, India2 

 

Abstract: On-line testing of word oriented memories is fast becoming a basic feature of digital systems, not only for 

critical applications, but also for highly-available applications. With the use of transparent BIST (built in self test) 

schemes for testing of RAMs, preservation of memory contents during periodic testing is assured but, it requires more 

hardware for signature prediction and more time for testing. Symmetric Transparent BIST skips the signature 

prediction phase, thus reducing the hardware and test time. Previously, one ALU was used for testing one RAM which 

increases the hardware of BIST circuit. The proposed method uses a symmetric transparent BIST scheme and an ALU 

capable of testing more than one RAM thus decreasing the hardware required to test RAM modules on a die. Different 

word widths of RAMs can be tested by using addition and subtraction operation of ALU with the help of series of 
March elements. Four RAM modules are tested using one ALU module in a roving manner. Due to the decrease in 

hardware overhead of proposed scheme the test time is also reduced.  
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I. INTRODUCTION 

The system on chip (soc) design‟s current practice is to 

allocate a large amount of chip area for memories, the 

manufacturing yield of such devices greatly depend on the 

yield of embedded memories [1] .The yield of these 
devices is greatly decreased because large number of 

defects occur by the use of memories. Memory arrays are 

more susceptible to defects as they are designed with 

minimal design rule tolerances. Numerous test algorithms 

and fault models have been introduced to detect defects in 

a memory. These test algorithms can be implemented 

effectively by the use of BIST (built in self test).BIST is 

capable of meeting certain requirements such as reduction 

in cost of testing, limited technician accessibility, high 

reliability, low repair cycle time, high fault coverage, full 

speed test application, extensive diagnostics, and on-chip 

test hardware thereby eliminating the need for 
sophisticated ATE. In online BIST the testing occurs 

during normal functional operating conditions, it provides 

real time fault detection. In critical applications such as 

space applications, it is impractical to shut down the 

system since contents of the memory must not be lost 

therefore online BIST is used for real time testing for fault 

detection, this is periodic testing in normal operation. The 

normal operation of RAM modules is halted then they are 

tested and again the normal operation is continued. 
 

March test algorithms are capable of locating and 

identifying the faults, and a major advantage is that it has 

high fault coverage and test time is usually linear with the 

size of memory which is acceptable in industrial standards. 

Each location in RAM is tested using these algorithms, set 

of data is written into each memory address and read back 

to verify it. If all the values that are read are same as 

values which are written the RAM is not faulty, otherwise 
it is faulty. A March algorithm consists of series of March 

elements that perform read and write operations on RAM. 

 

The memory which contain more than 1 bit per word is 

called word organized memory. This paper presents an 

online BIST using a symmetric transparent version of 

March algorithm to test various RAM modules consisting 
different word widths. Previously one ALU module was 

required to test one RAM module, in this paper one ALU 

module is used for testing four RAM modules as a 

consequence attaining reduction in hardware overhead and 

test time. 

 

II. MARCH ALGORITHMS 

March algorithms comprises of series of March elements. 

Traditional march algorithms consist of write all zero 

initially, here zero is written into all the RAMs this was 

used to make sure that the value of final signature in 

output compactor is known [9]. As shown in fig 1 each 
March element of March algorithm consists of a read 

operation or write operation or both of the operations. 

Write 0 is denoted by 𝑤0.  

 

Write 1 is denoted by 𝑤1 . Read 0 is denoted by 𝑟0 . Read 1 

is denoted by 𝑟1.  Denotes an increasing addressing 

order and  denotes a decreasing addressing order. The 

six march elements are denoted by 𝑚0 to 𝑚5 . The first 

March element 𝑤0 writes 0 into all the locations of the 

RAM therefore, all the original contents of RAM are lost it 

cannot be retrieved for future use. 
 

𝑚0 

𝑚1 

𝑚2 

𝑚3 

𝑚4 

𝑚5 

         (𝑤0) 

         (𝑟0𝑤1) 

         (𝑟1  𝑤0) 

        (𝑟0𝑤1) 

        (𝑟1𝑤0) 

        (𝑟0) 

Fig. 1 March algorithm 
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A. TRANSPARENT MARCH ALGORITHM  

Transparent algorithm is designed in order to preserve the 

memory contents of ram before the testing phase. This is 
achieved by use of signature prediction phase. 

 (𝑟𝑎 );  ((𝑟𝑎)𝑐 );  (𝑟𝑎 );  (𝑟𝑎 ); (𝑟𝑎 ); 

             (𝑟𝑎𝑤
𝑐
𝑎); 

            (𝑟𝑎𝑤𝑎); 

            (𝑟𝑎𝑤
𝑐
𝑎); 

            (𝑟𝑎𝑤𝑎); 

           (𝑟𝑎 ); 

𝒓𝒂   Read the contents of a word of the RAM, expecting to 
read the initial contents of the RAM word (i.e., before the 

beginning of the test). 
 

𝒓𝒂
𝒄   Read the contents of a word of the RAM, expecting to 

read the complement of the initial contents of the RAM 

word. 
 

Read the contents of a word of the RAM expecting 

to read the initial word contents and feed the complement 

value to the compactor. 
 

𝒘𝒂  Write to the memory word; the value that was stored 

in this memory word at the beginning of the test is 

(assumed to be) written to the word. 
 

𝒘𝒂
𝒄   Write to the memory word; the inverse of the value 

that  was stored in this memory word at the beginning of 

the test is (assumed to be) written to the word. 
 

By default, the data driven to the compactor with the (ra)
c 

operation are identical to the data driven by the ra
c [2], 

[10].The importance of the (ra)
c  operation is the 

following: during the signature prediction phase the 

contents of the RAM are equal to the initial contents (since 

no write operation has been performed); therefore, in order 

to simulate the ra
c operation we invert these contents prior 

to driving them to the compactor[11]. 

 

 
Fig. 2 Transparent BIST 

 

The first March element is the signature prediction phase 

as shown in fig 2 is needed for calculating the learnt 

signature which depends on the memory contents, and the 

latter phase is used for RAM‟s testing. During the testing 
process after each Read operation the obtained data is fed 

into the signature register, and at the end of the test session 

the final signature is compared with the learnt signature. 

The signature prediction phase consists of all Read 

operations of the complete march algorithm [8],[10]. One 

third of the test time is required for signature prediction. 

To cope with this problem symmetric transparent BIST 

algorithm is used. 

  B. SYMMETRIC TRANSPARENT MARCH 

ALGORITHM 

The symmetric march algorithm produces a symmetric test 
data string D. The march elements of the transparent 

algorithm are modified in such a way that the result 

obtained in the register is equal to a known value i.e. all 

ones [5]. In this way the need for signature prediction is 

eliminated and the test time is also reduced. 

      ((𝑟𝑎)𝑐 ); 

     (𝑟𝑎𝑤
𝑐
𝑎); 

   (𝑟𝑎𝑤𝑎); 

     (𝑟𝑎𝑤
𝑐
𝑎); 

      (𝑟𝑎𝑤𝑎);  

      (𝑟𝑎 ); 
 

By the first element it is evident that the signature 

prediction phase of transparent BIST is eliminated. The 

utilization of accumulator modules for output data 

compaction in symmetric transparent BIST for RAMs is 

used. If the March algorithm is symmetric (as in the case 

of symmetric transparent BIST) then the number of ra 

elements equals the number of rac elements plus the 

number of ((ra)c)elements (without taking into account the 
addressing order  of the march element) [3],[4]. The 

accumulator-based compaction of the responses holds the 

order-independent property (i.e., the final signature is 

independent of the order of the incoming vectors. If a 

symmetric transparent march algorithm is applied to a 

word-organized memory whose word length is n and the 

responses are captured in an n-stage accumulator 

comprising a 1‟s complement adder (starting from the all-

0 state), then the final content of the accumulator is equal 

to the all-1 state [7]. 

 
Let D Î {0, 1}2n be a data string. D is called symmetric, if 

there exists a data string d Î {0, 1}n with D = (d, d*) or D 

= (d, d*c). A transparent march test is called symmetric if 

it produces a symmetric test data string D. In general, it 

cannot be expected, that an arbitrary 

 

Transparent march test is symmetric [6]. However, typical 

transparent test algorithms contain symmetric 

subsequences and can be easily extended to fully 

symmetric versions. Consider the March C- algorithm as 

an example. It is originally defined as {c(w0); Ý(r0, w1); 

Ý(r1, w0); ß(r0, w1); ß(r1, w0); c(r0)} leading to the 
transparent version {Ý(ra, wac); Ý(rac, wa); ß(ra, wac); 

ß(rac, wa); c(ra)}. The test data stream fed to the signature 

analyzer is not symmetric . For example the 4-bit memory 

of provides the sequence (1101, 0010, 1011, 0100, 1011) 

with a decreasing addressing order in the last phase. If this 

sequence is extended to (0010, 1101, 0010, 1011, 0100, 

1011)), then it can be written as (d, d*c) with the 

symmetry axis after the first 12 bits. Such an extended 

symmetric sequence is for example produced by the 

extended test {Ý((ra)c); Ý(ra, wac); Ý(rac, wa); ß(ra, 

wac); ß(rac, wa); ß(ra)}, which guarantees at least the 
same fault coverage as the original test. Although the 
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extension will increase the test time from 9n to 10n, there 

is still a considerable gain in efficiency compared to the 

conventional 14n approach with signature prediction. 
Similarly, for any of the known transparent algorithms it is 

possible to identify a potential symmetry axis and to add 

some additional read sequences to obtain symmetric 

versions of the algorithms. Table 1 shows the resulting test 

lengths for some commonly used transparent march tests. 

 

TABLE 1 

COMPARISON OF TEST TIMES FOR TRANSPARENT 

AND SYMMETRIC TRANSPARENT BIST 

Algorithm 

Transparent BIST 

Symmetric 

Transparent    

BIST 

Signature 

prediction 
Test 

Total 

Time 
Total time 

MATS + 2n 4n 6n 4n 

March C- 5n 9n 14n 10n 

March A 4n 14n 18n 16n 

March B 6n 16n 22n 18n 

March Y 3n 5n 8n 6n 

 

 It can be observed that in all cases the symmetric versions 

of the considered transparent algorithms require a 

considerably shorter test time than the original versions. 
 

The properties of the proposed BIST technique with 

respect to error masking and fault coverage are 
summarized in the following observations. The stuck-at 

fault (SAF) can be described as follows: The logic value 

of a stuck-at (SA) cell or line is always 0 or 1. (It is always 

in state 0 or in state 1 and cannot be changed to the 

opposite state.) A test that has to detect and locate all 

stuck-at faults should satisfy the following requirement: 

From each cell or line, a 0 and a 1 must be read. A special 

case of the SAF is the transition fault (TF). It is defined as 

follows: A ceil or line that fails to undergo a 0 + 1 

transition when it is written is said to contain an up 

transition fault, for which the notation T-T will be used. 

Similarly, a T-J fault indicates the impossibility of making 
a 1 to 0 transition. The Coupling Fault (CF) used here and 

by is the 2-coupling fault. It involves two cells and is 

defined as follows: A write operation that generates a 0 or 

a 1 transition in one cell changes the contents of a second 

cell. Two different types of coupling faults can be 

distinguished, idempotent coupling fault and inversion 

coupling fault. The idempotent coupling fault is the one in 

which a transition in one cell forces the contents of second 

cell to a certain value 0 or 1.  Inversion coupling fault is 

the one in which transition of one cell inverts the contents 

of second cell. A test that has to detect and locate all 
coupling faults should satisfy the following requirement: 

For all cells that are coupled cells, each cell should be read 

after a series of possible coupling faults may have 

occurred (by writing into several coupling cells), with the 

condition that the number of transitions in the coupled cell 

is odd. This requirement ensures that all coupled cells are 

read while they are in a state opposite to the expected 

state. 

TABLE 2 

SIMULATION RESULTS (FAULT COVERAGE IN % 

FOR SINGLE FAULTS) FOR A 32 KBIT MEMORY 

Algorithm 
 

Fault 

Model 
  

SAF TF CFid CFin 

March C           
Transparent 

symmetric 

99.9992 

100 

99.991 

100 

99.995 

100 

99.996 

100 

March C- 

transparent 

symmetric 

99.992 

100 

99.991 

100 

99.996 

100 

99.997 

100 

March X 

transparent 

symmetric 

100 

100 

100 

100 

49.993 

49.996 

99.992 

99.997 

 

 
Fig.3. Proposed ALU based BIST for varying word widths 

of RAM 

 

The RAM module implemented consists of two modes of 

operations such as Read & Write. The RAM module 

during Write operation address is given and the data that 

has to be stored is also given. The data will be stored in 

the specified address. During Read operation the address is 

specified. The data that is present in the specified address 

is given on the output data signal. In the architecture four 

RAMs are implemented with different word widths. As 
shown in fig 3 the RAMs can store the 8bits, 6bits and 

4bits and 2bits respectively. The RAMs are selected 

depending upon the chip select signals cs1, cs2 and cs3 

and cs4. When CS1 is enabled RAM1 is selected for 

testing. When CS2 is enabled RAM2 is selected for 

testing. When CS3 is enabled RAM3 is selected for 

testing. When CS4 is enabled RAM4 is selected for 

testing. Stuff signals are connected to the output signals of 

the RAMs that are passing through the ALU. If RAM of 4 

bits is being accessed then the Stuff values must be given 

in order to make it 8 bits. If RAM of 8 bits is being 
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accessed then the Stuff values must not be given because it 

is already 8 bits..). When RAM 4 is selected then the stuff 

values are given as “000000”, because the ALU that we 
have implemented is of 8-stage. When RAM2 is selected 

then the stuff values are „0000‟. There is no stuff value 

when we have selected RAM4.  

 

B. OPERATION OF ALU MODULE: 

The ALU module in the architecture stands for Arithmetic 

and Logic Unit which performs arithmetic and logical 

operations on the data. The ALU implemented in this 

architecture is a 1‟s complement ALU. For the description 

of the project, we will denote with n the number of stages 

of the ALU that can perform one‟s complement addition 
and with k the number of bits of the RAM word (hence 

k<n) .The purpose of the proposed scheme is to assure that 

the contents of the register will be equal to a specific value 

(i.e. ‟11…1‟) at the end of the test. In order to assure this, 

the (n-k) high-order inputs of the ALU are appropriately 

driven by the all-1 or all-0 value. It should be noted that, if 

the march  algorithm is symmetric, then the inputs driven 

to the march algorithm n is symmetric, then the inputs 

driven to the response verifier and data generator are 

complementary during consecutive march elements. In 

order to expand this for the case where the width of 

memory is smaller than the number of ALU stages, we add 
a series of (n-k) High-order inputs of exactly the half 

elements added to the ALU. This stems from the fact that 

if 𝑎 ≤ 2𝑘 , since 

                       𝑎 + 𝑎𝑐 = 2𝑘 −  1, 
Then we also have that 

( 2𝑖)  + 𝑎 + 𝑎𝑐 = 2𝑛 − 1

𝑛−1

 𝑖=𝑘

 

For example, if k=6 and n=8, let us take the case where a= 

 000101 2 =  5 10  𝑎𝑛𝑑 𝑎𝑐 =  111010 2 =  58 10.  
then we have that  

( 2𝑖)  + 𝑎 + 𝑎𝑐 = 26 + 27 + 5 + 58

𝑛−1

 𝑖=𝑘

 

                                      = 64+128+5+58 

                                                  =255 

                                                   = 28 − 1 = 2𝑛 − 1 
 

Using the above observation, we can extend the scheme in 
order to handle the case where the ALU has, more stages 

than the RAM word width. More precisely, we can stuff 

the high-order bits with a signal that has the value „1‟ 

during half the cycles and „0‟ during the other half. Input 

is driven by the inv signal in Fig 3. Therefore, the inverse 

of the read vector appears at the outputs the 

adder/subtractor and applied to the RAM inputs. 

 

 Let us consider the 6-bit RAM1 presented in Fig 3. The 

outputs of the memory are driven to an n = 8-stage ALU 

comprising a 1‟s complement adder. For the 
implementation of the (ra)c march element, the subtraction 

operation of the accumulator can be utilized. In order to 

apply march elements of the form (ra, wa
c) or (ra

c, wa) the 

output of the RAM must be inverted and then fed back to 

its inputs; with the proposed scheme, this can be done by 

forcing the all-1 vector to one input of the adder/subtractor 

and perform a subtract operation. This is done with the OR 

gates whose one whose one input is driven by the inv 
signal in Fig. Therefore, the inverse of the read vector 

appears at the outputs the adder/subtractor and applied to 

the RAM inputs. The addition operation is done by a 

formula given as (A-1+B(MOD 2n-1)+1). The MOD 

operations can be seen in Table 3. 
 

TABLE 3 

OBSERVATION OF MOD VALUES IN ADDITION 

OPERATION 

A-B+1 
Result of MOD 

operation 

0 0 

1 1 

2 2 

3 3 

. 

. 

. 

 

255 255 

256 0 

257 1 

258 2 

. 

. 

. 

 

510 254 

511 255 

 

Subtraction is given as 

 If (A>B) then not (A-B) 

 If (A<B) then not (B-A) 

                  Let   A= 000010      i.e ( ra = 010)  

                          B= 000000 

                      A-B =0 00010 
               not(A-B)= 111101     i.e((ra)c   = 101)  

                 Let B =000010         i.e ( ra = 010)  

                       A= 000000 

                       B-A =0 00010 

               not(B-A)= 111101     i.e((ra)c   = 101) 

  

Thus, each March element in March algorithms can be 

implemented using the addition and subtraction operations 

of ALU module. 
 

 
Fig.4. Device utilization summary of BIST using single 

ALU for varying word widths of RAM 

 

The device utilization summary of BIST using single ALU 

for four RAMs of different word widths is shown in 

fig.4.the implementation is done using Spartan3 

FPGA(Xc3s500e-5fg320). The number of slices available 
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is 4656 of which 374 are used. The logic utilization can be 

seen in fig.4 along with the percentage use of the logic 

devices. The previous schemes used for testing RAMs 
required one ALU module for Each RAM therefore the 

logic utilization for 4 RAM modules is four times more 

than the logic utilization of proposed scheme. There is a 

decrease in the hardware in the proposed scheme, the 

hardware utilization is 84% less when it is compared with 

previous schemes.    
 

III. SIMULATION RESULTS 

In this work we have designed a ALU based scheme for 

online BIST of RAMs. The code is written in VHDL 

language. Xilinx ISE 13.2 is the tool used to convert the 

VHDL language to hardware blocks and implemented on 

Xilinx Spartan 3e based Xc3s500e FPGA device. The 

benefits associated with FPGA such as flexibility, shorter 

time to market and reconfigurability make them a very 

attractive choice for implementing the designs. A full 
software simulation approach is useful in two aspects. It 

offers full visibility into the design and allows the test 

bench or design to be changed and re-verified in a rapid 

manner. The challenges, however, are getting an accurate 

simulation model of the external memory module and 

achieving a reasonable simulation speed. In contrast, 

running the design in hardware addresses these problems, 

but at the cost of reduced visibility into the design. It is 

also very complex to set up and change the test bench in 

hardware. I Sim hardware co-simulation gives flexibility 

to run a portion of design in hardware while simulating the 
rest in software. The memory controller and external 

memory are, for example, good candidates to put in 

hardware so that they are modelled accurately and 

simulated quickly. The test bench and the application logic 

in your design, which are under development, should be 

simulated in software so you can change, verify and debug 

them easily and rapidly. In the Xilinx simulation 

environment, we create an ise file, and then we specify the 

features of the device such as the device family, device, 

package, speed grade, synthesis tool, simulation tool, top 

level module type and the language. Then we add the 

source files i.e. the code and its test bench. Thus the ise 
file is created. Test bench with several test cases were 

setup to verify the expected results. After building the files 

we could able to see the design overview of the top level 

file, device utilization summary and performance 

summary. The figure 5 shows the result of our top module 

simulation, where the register of 8 bits is holding the all-1 

value. If the register holds some other value then it results 

that there is a fault in the RAM module. These faults are 

shown as fault 1, fault 2, faults 3, fault 4, of RAM 1,2,3,4 

respectively (the RAMs as shown is the fig.3).   
 

IV. CONCLUSION 

In this paper it is shown that need for using BIST for 

memory is observed that today‟s all the SOC chips contain 

most area occupied by memory and BIST reduces the 

complexity, and thereby decrease the cost and reduce 

reliance upon external (pattern-programmed) test 

equipment. 
 By utilizing symmetric transparent algorithm the 

hardware used for testing is considerably decreased 

because of skipping the signature prediction phase 

previously used in transparent algorithms. The fault 

coverage and test times are also compared and it is 
observed that symmetric transparent algorithm technique 

used in this paper required least test time. The fault 

coverage of symmetric transparent algorithm is also very 

high. Four RAM modules of word widths 2,4,6,8 are 

tested using a single 8 bit ALU instead of using one ALU 

module for single RAM or similar word width of RAM 

modules thus the ALU modules are also decreased.  
 

 
Fig.5. Result of simulation. 
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