
ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7665

An ALU Based Online BIST for Varying Word

Widths of RAM

B.Niharika
1
, Rani Rajesh

2

Student, Electronics and Communication Department, Stanley College of Engineering, Hyderabad, India1

Associate Professor, Electronics and Communication Department, Stanley College of Engineering, Hyderabad, India2

Abstract: On-line testing of word oriented memories is fast becoming a basic feature of digital systems, not only for

critical applications, but also for highly-available applications. With the use of transparent BIST (built in self test)

schemes for testing of RAMs, preservation of memory contents during periodic testing is assured but, it requires more

hardware for signature prediction and more time for testing. Symmetric Transparent BIST skips the signature

prediction phase, thus reducing the hardware and test time. Previously, one ALU was used for testing one RAM which

increases the hardware of BIST circuit. The proposed method uses a symmetric transparent BIST scheme and an ALU

capable of testing more than one RAM thus decreasing the hardware required to test RAM modules on a die. Different

word widths of RAMs can be tested by using addition and subtraction operation of ALU with the help of series of
March elements. Four RAM modules are tested using one ALU module in a roving manner. Due to the decrease in

hardware overhead of proposed scheme the test time is also reduced.

Keywords: BIST (built in self test, March algorithms, memory test, Symmetric transparent built in self test (BIST),

online testing, memory testing, and hardware overhead.

I. INTRODUCTION

The system on chip (soc) design‟s current practice is to

allocate a large amount of chip area for memories, the

manufacturing yield of such devices greatly depend on the

yield of embedded memories [1] .The yield of these
devices is greatly decreased because large number of

defects occur by the use of memories. Memory arrays are

more susceptible to defects as they are designed with

minimal design rule tolerances. Numerous test algorithms

and fault models have been introduced to detect defects in

a memory. These test algorithms can be implemented

effectively by the use of BIST (built in self test).BIST is

capable of meeting certain requirements such as reduction

in cost of testing, limited technician accessibility, high

reliability, low repair cycle time, high fault coverage, full

speed test application, extensive diagnostics, and on-chip

test hardware thereby eliminating the need for
sophisticated ATE. In online BIST the testing occurs

during normal functional operating conditions, it provides

real time fault detection. In critical applications such as

space applications, it is impractical to shut down the

system since contents of the memory must not be lost

therefore online BIST is used for real time testing for fault

detection, this is periodic testing in normal operation. The

normal operation of RAM modules is halted then they are

tested and again the normal operation is continued.

March test algorithms are capable of locating and

identifying the faults, and a major advantage is that it has

high fault coverage and test time is usually linear with the

size of memory which is acceptable in industrial standards.

Each location in RAM is tested using these algorithms, set

of data is written into each memory address and read back

to verify it. If all the values that are read are same as

values which are written the RAM is not faulty, otherwise
it is faulty. A March algorithm consists of series of March

elements that perform read and write operations on RAM.

The memory which contain more than 1 bit per word is

called word organized memory. This paper presents an

online BIST using a symmetric transparent version of

March algorithm to test various RAM modules consisting
different word widths. Previously one ALU module was

required to test one RAM module, in this paper one ALU

module is used for testing four RAM modules as a

consequence attaining reduction in hardware overhead and

test time.

II. MARCH ALGORITHMS

March algorithms comprises of series of March elements.

Traditional march algorithms consist of write all zero

initially, here zero is written into all the RAMs this was

used to make sure that the value of final signature in

output compactor is known [9]. As shown in fig 1 each
March element of March algorithm consists of a read

operation or write operation or both of the operations.

Write 0 is denoted by 𝑤0.

Write 1 is denoted by 𝑤1 . Read 0 is denoted by 𝑟0 . Read 1

is denoted by 𝑟1. Denotes an increasing addressing

order and denotes a decreasing addressing order. The

six march elements are denoted by 𝑚0 to 𝑚5 . The first

March element 𝑤0 writes 0 into all the locations of the

RAM therefore, all the original contents of RAM are lost it

cannot be retrieved for future use.

𝑚0

𝑚1

𝑚2

𝑚3

𝑚4

𝑚5

 (𝑤0)

 (𝑟0𝑤1)

 (𝑟1 𝑤0)

 (𝑟0𝑤1)

 (𝑟1𝑤0)

 (𝑟0)

Fig. 1 March algorithm

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7666

A. TRANSPARENT MARCH ALGORITHM

Transparent algorithm is designed in order to preserve the

memory contents of ram before the testing phase. This is
achieved by use of signature prediction phase.

 (𝑟𝑎); ((𝑟𝑎)𝑐); (𝑟𝑎); (𝑟𝑎); (𝑟𝑎);

 (𝑟𝑎𝑤
𝑐
𝑎);

 (𝑟𝑎𝑤𝑎);

 (𝑟𝑎𝑤
𝑐
𝑎);

 (𝑟𝑎𝑤𝑎);

 (𝑟𝑎);

𝒓𝒂 Read the contents of a word of the RAM, expecting to
read the initial contents of the RAM word (i.e., before the

beginning of the test).

𝒓𝒂
𝒄 Read the contents of a word of the RAM, expecting to

read the complement of the initial contents of the RAM

word.

Read the contents of a word of the RAM expecting

to read the initial word contents and feed the complement

value to the compactor.

𝒘𝒂 Write to the memory word; the value that was stored

in this memory word at the beginning of the test is

(assumed to be) written to the word.

𝒘𝒂
𝒄 Write to the memory word; the inverse of the value

that was stored in this memory word at the beginning of

the test is (assumed to be) written to the word.

By default, the data driven to the compactor with the (ra)
c

operation are identical to the data driven by the ra
c [2],

[10].The importance of the (ra)
c operation is the

following: during the signature prediction phase the

contents of the RAM are equal to the initial contents (since

no write operation has been performed); therefore, in order

to simulate the ra
c operation we invert these contents prior

to driving them to the compactor[11].

Fig. 2 Transparent BIST

The first March element is the signature prediction phase

as shown in fig 2 is needed for calculating the learnt

signature which depends on the memory contents, and the

latter phase is used for RAM‟s testing. During the testing
process after each Read operation the obtained data is fed

into the signature register, and at the end of the test session

the final signature is compared with the learnt signature.

The signature prediction phase consists of all Read

operations of the complete march algorithm [8],[10]. One

third of the test time is required for signature prediction.

To cope with this problem symmetric transparent BIST

algorithm is used.

 B. SYMMETRIC TRANSPARENT MARCH

ALGORITHM

The symmetric march algorithm produces a symmetric test
data string D. The march elements of the transparent

algorithm are modified in such a way that the result

obtained in the register is equal to a known value i.e. all

ones [5]. In this way the need for signature prediction is

eliminated and the test time is also reduced.

 ((𝑟𝑎)𝑐);

 (𝑟𝑎𝑤
𝑐
𝑎);

 (𝑟𝑎𝑤𝑎);

 (𝑟𝑎𝑤
𝑐
𝑎);

 (𝑟𝑎𝑤𝑎);

 (𝑟𝑎);

By the first element it is evident that the signature

prediction phase of transparent BIST is eliminated. The

utilization of accumulator modules for output data

compaction in symmetric transparent BIST for RAMs is

used. If the March algorithm is symmetric (as in the case

of symmetric transparent BIST) then the number of ra

elements equals the number of rac elements plus the

number of ((ra)c)elements (without taking into account the
addressing order of the march element) [3],[4]. The

accumulator-based compaction of the responses holds the

order-independent property (i.e., the final signature is

independent of the order of the incoming vectors. If a

symmetric transparent march algorithm is applied to a

word-organized memory whose word length is n and the

responses are captured in an n-stage accumulator

comprising a 1‟s complement adder (starting from the all-

0 state), then the final content of the accumulator is equal

to the all-1 state [7].

Let D Î {0, 1}2n be a data string. D is called symmetric, if

there exists a data string d Î {0, 1}n with D = (d, d*) or D

= (d, d*c). A transparent march test is called symmetric if

it produces a symmetric test data string D. In general, it

cannot be expected, that an arbitrary

Transparent march test is symmetric [6]. However, typical

transparent test algorithms contain symmetric

subsequences and can be easily extended to fully

symmetric versions. Consider the March C- algorithm as

an example. It is originally defined as {c(w0); Ý(r0, w1);

Ý(r1, w0); ß(r0, w1); ß(r1, w0); c(r0)} leading to the
transparent version {Ý(ra, wac); Ý(rac, wa); ß(ra, wac);

ß(rac, wa); c(ra)}. The test data stream fed to the signature

analyzer is not symmetric . For example the 4-bit memory

of provides the sequence (1101, 0010, 1011, 0100, 1011)

with a decreasing addressing order in the last phase. If this

sequence is extended to (0010, 1101, 0010, 1011, 0100,

1011)), then it can be written as (d, d*c) with the

symmetry axis after the first 12 bits. Such an extended

symmetric sequence is for example produced by the

extended test {Ý((ra)c); Ý(ra, wac); Ý(rac, wa); ß(ra,

wac); ß(rac, wa); ß(ra)}, which guarantees at least the
same fault coverage as the original test. Although the

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7667

extension will increase the test time from 9n to 10n, there

is still a considerable gain in efficiency compared to the

conventional 14n approach with signature prediction.
Similarly, for any of the known transparent algorithms it is

possible to identify a potential symmetry axis and to add

some additional read sequences to obtain symmetric

versions of the algorithms. Table 1 shows the resulting test

lengths for some commonly used transparent march tests.

TABLE 1

COMPARISON OF TEST TIMES FOR TRANSPARENT

AND SYMMETRIC TRANSPARENT BIST

Algorithm

Transparent BIST

Symmetric

Transparent

BIST

Signature

prediction
Test

Total

Time
Total time

MATS + 2n 4n 6n 4n

March C- 5n 9n 14n 10n

March A 4n 14n 18n 16n

March B 6n 16n 22n 18n

March Y 3n 5n 8n 6n

 It can be observed that in all cases the symmetric versions

of the considered transparent algorithms require a

considerably shorter test time than the original versions.

The properties of the proposed BIST technique with

respect to error masking and fault coverage are
summarized in the following observations. The stuck-at

fault (SAF) can be described as follows: The logic value

of a stuck-at (SA) cell or line is always 0 or 1. (It is always

in state 0 or in state 1 and cannot be changed to the

opposite state.) A test that has to detect and locate all

stuck-at faults should satisfy the following requirement:

From each cell or line, a 0 and a 1 must be read. A special

case of the SAF is the transition fault (TF). It is defined as

follows: A ceil or line that fails to undergo a 0 + 1

transition when it is written is said to contain an up

transition fault, for which the notation T-T will be used.

Similarly, a T-J fault indicates the impossibility of making
a 1 to 0 transition. The Coupling Fault (CF) used here and

by is the 2-coupling fault. It involves two cells and is

defined as follows: A write operation that generates a 0 or

a 1 transition in one cell changes the contents of a second

cell. Two different types of coupling faults can be

distinguished, idempotent coupling fault and inversion

coupling fault. The idempotent coupling fault is the one in

which a transition in one cell forces the contents of second

cell to a certain value 0 or 1. Inversion coupling fault is

the one in which transition of one cell inverts the contents

of second cell. A test that has to detect and locate all
coupling faults should satisfy the following requirement:

For all cells that are coupled cells, each cell should be read

after a series of possible coupling faults may have

occurred (by writing into several coupling cells), with the

condition that the number of transitions in the coupled cell

is odd. This requirement ensures that all coupled cells are

read while they are in a state opposite to the expected

state.

TABLE 2

SIMULATION RESULTS (FAULT COVERAGE IN %

FOR SINGLE FAULTS) FOR A 32 KBIT MEMORY

Algorithm

Fault

Model

SAF TF CFid CFin

March C
Transparent

symmetric

99.9992

100

99.991

100

99.995

100

99.996

100

March C-

transparent

symmetric

99.992

100

99.991

100

99.996

100

99.997

100

March X

transparent

symmetric

100

100

100

100

49.993

49.996

99.992

99.997

Fig.3. Proposed ALU based BIST for varying word widths

of RAM

The RAM module implemented consists of two modes of

operations such as Read & Write. The RAM module

during Write operation address is given and the data that

has to be stored is also given. The data will be stored in

the specified address. During Read operation the address is

specified. The data that is present in the specified address

is given on the output data signal. In the architecture four

RAMs are implemented with different word widths. As
shown in fig 3 the RAMs can store the 8bits, 6bits and

4bits and 2bits respectively. The RAMs are selected

depending upon the chip select signals cs1, cs2 and cs3

and cs4. When CS1 is enabled RAM1 is selected for

testing. When CS2 is enabled RAM2 is selected for

testing. When CS3 is enabled RAM3 is selected for

testing. When CS4 is enabled RAM4 is selected for

testing. Stuff signals are connected to the output signals of

the RAMs that are passing through the ALU. If RAM of 4

bits is being accessed then the Stuff values must be given

in order to make it 8 bits. If RAM of 8 bits is being

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7668

accessed then the Stuff values must not be given because it

is already 8 bits..). When RAM 4 is selected then the stuff

values are given as “000000”, because the ALU that we
have implemented is of 8-stage. When RAM2 is selected

then the stuff values are „0000‟. There is no stuff value

when we have selected RAM4.

B. OPERATION OF ALU MODULE:

The ALU module in the architecture stands for Arithmetic

and Logic Unit which performs arithmetic and logical

operations on the data. The ALU implemented in this

architecture is a 1‟s complement ALU. For the description

of the project, we will denote with n the number of stages

of the ALU that can perform one‟s complement addition
and with k the number of bits of the RAM word (hence

k<n) .The purpose of the proposed scheme is to assure that

the contents of the register will be equal to a specific value

(i.e. ‟11…1‟) at the end of the test. In order to assure this,

the (n-k) high-order inputs of the ALU are appropriately

driven by the all-1 or all-0 value. It should be noted that, if

the march algorithm is symmetric, then the inputs driven

to the march algorithm n is symmetric, then the inputs

driven to the response verifier and data generator are

complementary during consecutive march elements. In

order to expand this for the case where the width of

memory is smaller than the number of ALU stages, we add
a series of (n-k) High-order inputs of exactly the half

elements added to the ALU. This stems from the fact that

if 𝑎 ≤ 2𝑘 , since

 𝑎 + 𝑎𝑐 = 2𝑘 − 1,
Then we also have that

(2𝑖) + 𝑎 + 𝑎𝑐 = 2𝑛 − 1

𝑛−1

 𝑖=𝑘

For example, if k=6 and n=8, let us take the case where a=

 000101 2 = 5 10 𝑎𝑛𝑑 𝑎𝑐 = 111010 2 = 58 10.
then we have that

(2𝑖) + 𝑎 + 𝑎𝑐 = 26 + 27 + 5 + 58

𝑛−1

 𝑖=𝑘

 = 64+128+5+58

 =255

 = 28 − 1 = 2𝑛 − 1

Using the above observation, we can extend the scheme in
order to handle the case where the ALU has, more stages

than the RAM word width. More precisely, we can stuff

the high-order bits with a signal that has the value „1‟

during half the cycles and „0‟ during the other half. Input

is driven by the inv signal in Fig 3. Therefore, the inverse

of the read vector appears at the outputs the

adder/subtractor and applied to the RAM inputs.

 Let us consider the 6-bit RAM1 presented in Fig 3. The

outputs of the memory are driven to an n = 8-stage ALU

comprising a 1‟s complement adder. For the
implementation of the (ra)c march element, the subtraction

operation of the accumulator can be utilized. In order to

apply march elements of the form (ra, wa
c) or (ra

c, wa) the

output of the RAM must be inverted and then fed back to

its inputs; with the proposed scheme, this can be done by

forcing the all-1 vector to one input of the adder/subtractor

and perform a subtract operation. This is done with the OR

gates whose one whose one input is driven by the inv
signal in Fig. Therefore, the inverse of the read vector

appears at the outputs the adder/subtractor and applied to

the RAM inputs. The addition operation is done by a

formula given as (A-1+B(MOD 2n-1)+1). The MOD

operations can be seen in Table 3.

TABLE 3

OBSERVATION OF MOD VALUES IN ADDITION

OPERATION

A-B+1
Result of MOD

operation

0 0

1 1

2 2

3 3

.

.

.

255 255

256 0

257 1

258 2

.

.

.

510 254

511 255

Subtraction is given as

 If (A>B) then not (A-B)

 If (A<B) then not (B-A)

 Let A= 000010 i.e (ra = 010)

 B= 000000

 A-B =0 00010
 not(A-B)= 111101 i.e((ra)c = 101)

 Let B =000010 i.e (ra = 010)

 A= 000000

 B-A =0 00010

 not(B-A)= 111101 i.e((ra)c = 101)

Thus, each March element in March algorithms can be

implemented using the addition and subtraction operations

of ALU module.

Fig.4. Device utilization summary of BIST using single

ALU for varying word widths of RAM

The device utilization summary of BIST using single ALU

for four RAMs of different word widths is shown in

fig.4.the implementation is done using Spartan3

FPGA(Xc3s500e-5fg320). The number of slices available

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7669

is 4656 of which 374 are used. The logic utilization can be

seen in fig.4 along with the percentage use of the logic

devices. The previous schemes used for testing RAMs
required one ALU module for Each RAM therefore the

logic utilization for 4 RAM modules is four times more

than the logic utilization of proposed scheme. There is a

decrease in the hardware in the proposed scheme, the

hardware utilization is 84% less when it is compared with

previous schemes.

III. SIMULATION RESULTS

In this work we have designed a ALU based scheme for

online BIST of RAMs. The code is written in VHDL

language. Xilinx ISE 13.2 is the tool used to convert the

VHDL language to hardware blocks and implemented on

Xilinx Spartan 3e based Xc3s500e FPGA device. The

benefits associated with FPGA such as flexibility, shorter

time to market and reconfigurability make them a very

attractive choice for implementing the designs. A full
software simulation approach is useful in two aspects. It

offers full visibility into the design and allows the test

bench or design to be changed and re-verified in a rapid

manner. The challenges, however, are getting an accurate

simulation model of the external memory module and

achieving a reasonable simulation speed. In contrast,

running the design in hardware addresses these problems,

but at the cost of reduced visibility into the design. It is

also very complex to set up and change the test bench in

hardware. I Sim hardware co-simulation gives flexibility

to run a portion of design in hardware while simulating the
rest in software. The memory controller and external

memory are, for example, good candidates to put in

hardware so that they are modelled accurately and

simulated quickly. The test bench and the application logic

in your design, which are under development, should be

simulated in software so you can change, verify and debug

them easily and rapidly. In the Xilinx simulation

environment, we create an ise file, and then we specify the

features of the device such as the device family, device,

package, speed grade, synthesis tool, simulation tool, top

level module type and the language. Then we add the

source files i.e. the code and its test bench. Thus the ise
file is created. Test bench with several test cases were

setup to verify the expected results. After building the files

we could able to see the design overview of the top level

file, device utilization summary and performance

summary. The figure 5 shows the result of our top module

simulation, where the register of 8 bits is holding the all-1

value. If the register holds some other value then it results

that there is a fault in the RAM module. These faults are

shown as fault 1, fault 2, faults 3, fault 4, of RAM 1,2,3,4

respectively (the RAMs as shown is the fig.3).

IV. CONCLUSION

In this paper it is shown that need for using BIST for

memory is observed that today‟s all the SOC chips contain

most area occupied by memory and BIST reduces the

complexity, and thereby decrease the cost and reduce

reliance upon external (pattern-programmed) test

equipment.
 By utilizing symmetric transparent algorithm the

hardware used for testing is considerably decreased

because of skipping the signature prediction phase

previously used in transparent algorithms. The fault

coverage and test times are also compared and it is
observed that symmetric transparent algorithm technique

used in this paper required least test time. The fault

coverage of symmetric transparent algorithm is also very

high. Four RAM modules of word widths 2,4,6,8 are

tested using a single 8 bit ALU instead of using one ALU

module for single RAM or similar word width of RAM

modules thus the ALU modules are also decreased.

Fig.5. Result of simulation.

REFERENCES
[1] X.DU,N.Mukherjee, W.T.Cheng and S.M Reddy, “Full speed field

programmable memory BIST architecture”, Proc. Of Int. Test

conference, pp.1173-1182, 2005.

[2] Jin-Fu Li, “Transparent test methodologies for Random access

memory without/with ECC”, Computer aided design of Integrated

circuits and systems, IEEE transactions on page: 1888-1893,

volume: 26 Issue: 10, Oct.2007.

[3] R. Dorsch, H-J. Wunderlich, “Accumulator-Based Deterministic

BIST”, International Test Conference, pp.412-421, 1998.

[4] I. Voyiatzis, “An Accumulator –based compaction scheme with

reduced aliasing for on-line BIST of RAMs”, IEEE Transactions on

VLSI Systems, vo.16, no, 9, September 2008, pp.1248-1251.

[5] V. N. Yarnolik, S. Hellebrand, H.-J. Wunderlich, “Symmetric

Transparent BIST for RAMs”, in Date 1999, Munich, Germany,

March 9-12, 1999.

[6] I. Voyiatzis, “ Accumulator –based compression in Symmetric

Transparent RAM BIST”, in IEEE International Conference on

Design & Technology of Integrated Systems in Nanoscale

Technology, 2006.

[7] Stroele, “BIST pattern Generators using Addition and Subtraction

operations”, Journal of Electronic Testing: Theory and

Applications, vol. 11, pp. 69-80,1997.

[8] V. N. Yarnolik, I.V. Bykov, S. Hellebrand, H.-J. Wunderlich,

“Transparent Word oriented memory BIST based on symmetric

March algorithms”, in European dependable computing conference,

April 2005.

[9] A.J.Van de goor “using march test to test SRAMS” IEEE design

and test of computers.1993.

[10] M. Nicolaidis, “Theory of transparent BIST for RAMs” IEEE

transactions on computers, vol.45, no. 10, October 1996,pp.1141-

1156.

[11] [11] K. Thaller and A. Steininger, “A transparent online memory

test for simultaneous detection of functional faults and soft errors in

memories,” IEEE Trans. Rel.,vol. 52, no. 4, pp.413-422, Dec.2003.

	TRANSPARENT MARCH ALGORITHM

