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Abstract: The aim of Association Rule Mining is to find the correlation between data Items based on frequency of 

occurrence.  Infrequent Itemset mining is a variation of frequent itemset mining where it finds the uninteresting patterns 

i.e., it finds the data items which occurs very rarely. Considering weight for each distinct items in a transaction 
independent manner adds effectiveness for finding frequent itemset mining. Several articles related to frequent and 

weighted infrequent itemset mining were proposed. This paper focus on reviewing various Existing Algorithms related 

to frequent and infrequent itemset mining which creates a path for future researches in the field of Association Rule 

Mining.  
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I. INTRODUCTION 

Association Rule mining(ARM)[1] is one of the popular 

technique used to find the correlation between the data 

items in the database based on some statistical measures 

but not considering the interesting of the business users. 
ARM  is one of the oldest technique in data mining. The 

goal of ARM is to find the relationship, correlation among 

different data sets in the database. Itemset mining is an 

exploratory data mining technique widely used for 

discovering valuable correlations among data. Frequent 

itemsets mining is a core component of data mining and 

variations of association analysis, like association rule 

mining. Infrequent itemsets are produced from very big or 

huge data sets by applying some rules or association rule 

mining algorithms like Apriori technique, that take larger 

computing time to compute all the frequent itemsets. 
Extraction of frequent itemsets is a core step in many 

association analysis techniques. The frequent occurrence 

of item is expressed in terms of the support count. 

However, significantly less attention has been paid to 

mining of infrequent itemsets, but it has acquired 

significant usage in mining of negative association rules 

from infrequent itemset, fraud detection where rare 

patterns in financial or tax data may suggest unusual 

activity associated with fraudulent behavior, market basket 

analysis and in bioinformatics where rare patterns in 

microarray data may suggest genetic disorders. Several 
frequent item set mining including Apriori, FP-Growth 

algorithm, AFOPT algorithm, NONORDFP algorithm, 

FP-GROWTH* algorithm, Broglet’s FP-Growth, DynFP-

Growth algorithm, Enhanced FP-Growth algorithm, IFP-

min Algorithm and Transaction mapping algorithm  were 

proposed. And this paper discuss about literature review 

on various frequent and infrequent itemset mining 

algorithms. 

 

II. LITERATURE REVIEW 

A. The Apriori Algorithm 

Apriori[2]  was the first proposed algorithm in association 
rule mining, to identify the frequent itemsets in the large  

 

transactional database. Apriori works in two phases. 

During the first phase it generates all possible Itemsets 

combinations. These combinations will act as possible 

candidates. The candidates will be used in subsequent 
phases. In Apriori algorithm, first the  minimum support is 

applied to find all frequent itemsets in a database and 

Second, these frequent itemsets and the minimum 

confidence constraint are used to form rules.  

 

Apriori Algorithm: 

procedureApriori (T, minSupport)  

{ 

 //T is the database and minSupport is the minimum   

support 

L1= {frequent items};  

for (k= 2; Lk-1 !=∅; k++)  

{  

Ck= candidates generated from Lk-1  

for each transaction t in database  

do 

{  

 #increment the count of all candidates in Ck that are 

contained in t  

 Lk = candidates in Ck with minSupport 

 }//end for each  

 }//end for  

return⋃k Lk ; 

}  

 

The main drawback of Apriori is the generation of large 

number of candidate sets. The efficiency of apriori can be 

improved by Monotonicity property, hash based 

technique, Partioning methods and so on. 

 

B. FP-growth Algorithm 

The drawback of Apriori can be improved by Frequent 
pattern Growth algorithm[3].This algorithm is 

implemented without generating the candidate sets. This 

algorithm proposes a tree structure called FP tree structure, 
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going to collect information from the database and creates 

an optimized data structure as Conditional pattern. Initially 

it Scans the transaction database DB once and Collects the 
set of frequent items F and their supports and then  Sort 

the frequent itemsets in descending order as L, based on 

the support count. This algorithm reduces the number of 

candidate set generation, number of transactions, number 

of comparisons.  
 

Algorithm FP-growth: 
Input: 

-A transactional database DB and a minimum support 

threshold ξ. 

Output:  

- frequent pattern tree, FP-tree 

/*phase1: */ 

(1) Scan the transactional database. 

(2) Collect the set of frequent items F and their supports. 

Sort F in support descending order as L. /* the list of 

frequent items*/ 

(3) [3] Create the root of an FP-tree, T, and label it as 
“root” /* for each transaction do */ 

(4) Select and sort the frequent items in Trans according 

to the order of L. 

(5) perform the insert-tree function /* call insert-tree 

function recursively */ /*phase2: */ 
 

Input: 
An  FP-treeconstructed in the above algorithm, 

D – transaction database; 

s – minimum support threshold. 

Output: 

-The complete set of frequent patterns. 

(1) call the FP-Growth function 

(2) check if the tree has a single path, 

(3) then for each combination (denoted as B) of the nodes 

in the path P do 

(4) generate pattern B ∪ A with support=minimum 

support of nodes in B 
(5) else 

(6) construct B’s conditional pattern base and B’s 

conditional FP-tree 
 

C. AFOPT Algorithm 

Liu et al[4] investigated the algorithmic performance 

space of the FP-growth algorithm. AFOPT algorithm uses 

dynamic ascending frequency order for both the search 

space exploration and prefix-tree construction, it uses the 

top-down traversal strategy. AFOPT algorithm utilizes 

dynamic ascending frequency for the item search space 

,adaptive representation for the conditional database 
format, physical construction for the conditional database 

construction, and top-down traversal strategy for the tree 

traversal. The dynamic ascending frequency search order 

can make the subsequent conditional databases shrink 

rapidly. As a result, it is useful to use the physical 

construction strategy with the dynamic ascending 

frequency order. 

 

D.  NONORDFP Algorithm 

The computational time and space complexity of the FP-

Growth algorithm was improved by NONORDFP 

algorithm. Racz[5] proposed thecompact representation of 

FP-tree allows faster allocation, traversal, and optionally 

projection. It contains less administrative information 
about the items in the database and allows more recursive 

steps to be carried out on the same data structure, with no 

need to rebuild it. 
 

E. FP-Growth* Algorithm 

Grahne et al [6], found that 80% of  CPU was used for 

traversing the FP-trees. Fpgrowth* algorithm uses FP-tree 

data structure in combination with the array-based and 

incorporates various optimization techniques. Array-based 
technique is used to reduce the traversal time of FP-tree. It 

reduces the memory consumption compared to FP-growth 

Algorithm.  
 

F. Broglet’s FP-Growth 

 FP-Growth algorithm can be improved by Broglet’s FP 

growth algorithm[6] . Initially it scans the frequencies of 

the items and  all infrequent items, that is, all items that 

appear in fewer transactions than a user-specified 

minimum number are discarded from the transactions, 
since, they can never be part of a frequent item set.  The 

items in each transaction are sorted, so that they are in 

descending order with respect to their frequency in the 

database. It reduces the computational cost in FP-Growth. 
 

G. DynFP-growth Algorithm 

The main drawback of the Aprioi-like methods is at the 
candidate set generation and test. This problem was taken 

into consideration by introducing a novel, compact data 

structure, named frequent pattern tree[3], or  FP-tree, is 

not unique for the same logical database. This approach 

can provide a very quick response to any queries even on 

databases that are being continuously updated. Because 

the dynamic reordering process, Gyorodi C et al [7] 

proposed a modification of the original structures, by 

replacing the single linked list with a doubly linked list for 

linking the tree nodes to the header and adding a master-

table to the same header. 
 

H. Enhanced FP-Growth Algorithm 

Enhanced-FP[8], which does its work without any prefix 

tree and any other complex data structure. It processes the 

transactions directly, so its main strength is its simplicity. 

It initially scans the supports of the items and is calculated. 

The items whose support count is less than minimum 

support are discarded and specified as infrequent items. 

Then the items in the database are sorted in ascending 

order with respect to their support. And the initial 
transaction database is converted in to a set of transaction 

list, with one list for each item. These lists are stored in 

array, each of which contains a pointer to the head of the 

list. And the Transaction lists are traversed from left to 

right for finding all the frequent item set that contain the 

item the list corresponds to. Before a transaction list is 

processed, its support count is checked, if it exceeds than 

minimum support count than there must be a frequent item 

set. 
 

I. IFP-min Algorithm 

IFP min algorithm[9] that uses a recursive approach to 

mine minimally infrequent Item sets(MIIs). The infrequent 
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item sets are then reported and it gets pruned from the 

database. The items presented in the modified database are 

individually frequent. This algorithm then selects the MIIs 
and it divides into two non-disjoint sets as residual 

database and projected database. First the IFP-min 

algorithm is applied to residual database, where the MIIs 

are reported, if the database has the single item then it is 

considered to be the item itself or as an empty set. Then 

IFP-min algorithm is applied to projected database. The 

itemsets in the projected database share the lf-item as a 

prefix. The MIIs obtained from the projected database by 

recursively applying the algorithm are compared with 

those obtained from residual database. If an itemset is 

found to occur in the second set, it is not reported; 
otherwise, the lf-item is included in the itemset and is 

reported as an MII of the original database. The use of 

residual tree is to reduce the computational time. 

 

J. Transaction mapping Algorithm 

The transaction tree is similar to FP-tree but there is no 

header table or node link. The transaction tree[10] has 

compact representation of all the transactions in the 

database. Each node in tree has an id corresponding to an 

item and a counter that keeps the number of transactions 

that contain this item in this path. Here we can compress 

transaction for each itemset to continuous intervals by 
mapping transaction ids into a different space to a 

transaction tree. Advantage of this algorithm is the 

performance can be improved compared to FP-Growth, 

FP-Growth* algorithms. 

 

Algorithm: 

Input: 

-Databse DB 

Output: 

-all infrequent item sets 

(1) scan the database and identify the infrequent item 
sets. 

(2) construct the transaction tree with the count for each 

node. 

(3) Construct the transaction interval lists. 

(4) Construct the lexicographic tree in a depth first order 

keeping only the minimum amount of information 

necessary to complete the search. 

 

K. The Infrequent Weighted Itemset Miner 

Algorithm 

IWI Miner is a FP-growth-like mining algorithm[11] that 
performs projection-based itemset mining. Hence, it 

performs the main FP-growth mining steps:  
 

(a) FP-tree creation and  
 

(b) recursive itemset mining from the FPtree index. Unlike 

FP-Growth, IWI Miner discovers infrequent weighted 

itemsets instead of frequent (unweighted) ones. To 

accomplish this task, the following main modifications 

with respect to FP-growth have been introduced:  
 

(i) A novel pruning strategy for pruning part of the search 

space early and  

(ii) a slightly modified FP-tree structure, which allows 

storing the IWI-support value associated with each node. 

Algorithm (IWI Miner(T, E)) 

Input:  

-T, a weighted transactional dataset 
Input:  

-E, a maximum IWI-support threshold 

Output:  

-F, the set of IWI satisfying E 

(1) F=0 /*Initialization*//*scan T and count the IWI-

support of each item */                           

(2) count the infrequent weighted item sets with the 

support value. 

(3) create header table which is a data structure which 

holds information about total weight values. 

(4) for each transaction, create equivalent transaction. 
(5) create an FP-Tree, for each transaction. 

(6) Iterate the process until all transactions are traced. 

(7) create conditional pattern base 

(8) calculate weight value. 

(9) obtain the infrequent item sets. 
 

To reduce the complexity of the mining process, IWI 
Miner adopts an FP-tree node pruning strategy to early 

discard items (nodes) that could never belong to any 

itemset satisfying the IWI-support threshold. Hence, an 

item(i.e., its associated nodes) is pruned if it appears only 

in tree paths from the root to a leaf node characterized by 

IWI-support value greater than E. 
 

L.  Minimal Infrequent Weighted ItemSet Miner 

The MIWIMining procedure is similar to 

IWIMining[1][11]. However, since MIWI Miner focuses 

on generating only minimal infrequent patterns, the 

recursive extraction in the MIWIMining procedure is 

stopped as soon as an infrequent itemset occurs. It finds 

both the infrequent itemsets and minimal infrequent 

itemset mining. The advantage of MIWI algorithm is 

reduction in generating the candidate sets, reducing the 

computational Time, improved the efficiency of algorithm 
performance compared to FP-Growth algorithm. 
 

III. CONCLUSION 

Weighted Itemset mining is an exploratory information 

mining system generally utilized for uncovering profitable 

connections among information. The main advantage to 

perform Infrequentitemset mining was to improve the 
profit of rarely found datasets in the transactions. The first 

attempt is to find the frequent item set mining and then 

discover the infrequent weighted item sets. Several 

frequent itemset mining algorithms as Apriori to FP- 

growth are there but generation of candidate sets is large. 

As per the analysis of all the existing algorithms MIWI is 

the most effective algorithm, which computes in very less 

computing time, improves the efficiency of performance 

when the database is large, computes the weighted 

transaction. 
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