
ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7670

Literature Review on Infrequent Itemset Mining

Algorithms

Sakthi Nathiarasan
1
, Kalaiyarasi

2
, Manikandan

3

M.E-Student, Department of CSE, Adhiyamaan College of Engineering, Hosur, India1,2

Assistant Professor, Department of CSE, Adhiyamaan College of Engineering, Hosur, India3

Abstract: The aim of Association Rule Mining is to find the correlation between data Items based on frequency of

occurrence. Infrequent Itemset mining is a variation of frequent itemset mining where it finds the uninteresting patterns

i.e., it finds the data items which occurs very rarely. Considering weight for each distinct items in a transaction
independent manner adds effectiveness for finding frequent itemset mining. Several articles related to frequent and

weighted infrequent itemset mining were proposed. This paper focus on reviewing various Existing Algorithms related

to frequent and infrequent itemset mining which creates a path for future researches in the field of Association Rule

Mining.

Keywords: Infrequent Itemset mining, Association Rule Mining, weight, Correlation

I. INTRODUCTION

Association Rule mining(ARM)[1] is one of the popular

technique used to find the correlation between the data

items in the database based on some statistical measures

but not considering the interesting of the business users.
ARM is one of the oldest technique in data mining. The

goal of ARM is to find the relationship, correlation among

different data sets in the database. Itemset mining is an

exploratory data mining technique widely used for

discovering valuable correlations among data. Frequent

itemsets mining is a core component of data mining and

variations of association analysis, like association rule

mining. Infrequent itemsets are produced from very big or

huge data sets by applying some rules or association rule

mining algorithms like Apriori technique, that take larger

computing time to compute all the frequent itemsets.
Extraction of frequent itemsets is a core step in many

association analysis techniques. The frequent occurrence

of item is expressed in terms of the support count.

However, significantly less attention has been paid to

mining of infrequent itemsets, but it has acquired

significant usage in mining of negative association rules

from infrequent itemset, fraud detection where rare

patterns in financial or tax data may suggest unusual

activity associated with fraudulent behavior, market basket

analysis and in bioinformatics where rare patterns in

microarray data may suggest genetic disorders. Several
frequent item set mining including Apriori, FP-Growth

algorithm, AFOPT algorithm, NONORDFP algorithm,

FP-GROWTH* algorithm, Broglet’s FP-Growth, DynFP-

Growth algorithm, Enhanced FP-Growth algorithm, IFP-

min Algorithm and Transaction mapping algorithm were

proposed. And this paper discuss about literature review

on various frequent and infrequent itemset mining

algorithms.

II. LITERATURE REVIEW

A. The Apriori Algorithm

Apriori[2] was the first proposed algorithm in association
rule mining, to identify the frequent itemsets in the large

transactional database. Apriori works in two phases.

During the first phase it generates all possible Itemsets

combinations. These combinations will act as possible

candidates. The candidates will be used in subsequent
phases. In Apriori algorithm, first the minimum support is

applied to find all frequent itemsets in a database and

Second, these frequent itemsets and the minimum

confidence constraint are used to form rules.

Apriori Algorithm:

procedureApriori (T, minSupport)

{

 //T is the database and minSupport is the minimum

support

L1= {frequent items};

for (k= 2; Lk-1 !=∅; k++)

{

Ck= candidates generated from Lk-1

for each transaction t in database

do

{

 #increment the count of all candidates in Ck that are

contained in t

 Lk = candidates in Ck with minSupport

 }//end for each

 }//end for

return⋃k Lk ;

}

The main drawback of Apriori is the generation of large

number of candidate sets. The efficiency of apriori can be

improved by Monotonicity property, hash based

technique, Partioning methods and so on.

B. FP-growth Algorithm

The drawback of Apriori can be improved by Frequent
pattern Growth algorithm[3].This algorithm is

implemented without generating the candidate sets. This

algorithm proposes a tree structure called FP tree structure,

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7671

going to collect information from the database and creates

an optimized data structure as Conditional pattern. Initially

it Scans the transaction database DB once and Collects the
set of frequent items F and their supports and then Sort

the frequent itemsets in descending order as L, based on

the support count. This algorithm reduces the number of

candidate set generation, number of transactions, number

of comparisons.

Algorithm FP-growth:
Input:

-A transactional database DB and a minimum support

threshold ξ.

Output:

- frequent pattern tree, FP-tree

/*phase1: */

(1) Scan the transactional database.

(2) Collect the set of frequent items F and their supports.

Sort F in support descending order as L. /* the list of

frequent items*/

(3) [3] Create the root of an FP-tree, T, and label it as
“root” /* for each transaction do */

(4) Select and sort the frequent items in Trans according

to the order of L.

(5) perform the insert-tree function /* call insert-tree

function recursively */ /*phase2: */

Input:
An FP-treeconstructed in the above algorithm,

D – transaction database;

s – minimum support threshold.

Output:

-The complete set of frequent patterns.

(1) call the FP-Growth function

(2) check if the tree has a single path,

(3) then for each combination (denoted as B) of the nodes

in the path P do

(4) generate pattern B ∪ A with support=minimum

support of nodes in B
(5) else

(6) construct B’s conditional pattern base and B’s

conditional FP-tree

C. AFOPT Algorithm

Liu et al[4] investigated the algorithmic performance

space of the FP-growth algorithm. AFOPT algorithm uses

dynamic ascending frequency order for both the search

space exploration and prefix-tree construction, it uses the

top-down traversal strategy. AFOPT algorithm utilizes

dynamic ascending frequency for the item search space

,adaptive representation for the conditional database
format, physical construction for the conditional database

construction, and top-down traversal strategy for the tree

traversal. The dynamic ascending frequency search order

can make the subsequent conditional databases shrink

rapidly. As a result, it is useful to use the physical

construction strategy with the dynamic ascending

frequency order.

D. NONORDFP Algorithm

The computational time and space complexity of the FP-

Growth algorithm was improved by NONORDFP

algorithm. Racz[5] proposed thecompact representation of

FP-tree allows faster allocation, traversal, and optionally

projection. It contains less administrative information
about the items in the database and allows more recursive

steps to be carried out on the same data structure, with no

need to rebuild it.

E. FP-Growth* Algorithm

Grahne et al [6], found that 80% of CPU was used for

traversing the FP-trees. Fpgrowth* algorithm uses FP-tree

data structure in combination with the array-based and

incorporates various optimization techniques. Array-based
technique is used to reduce the traversal time of FP-tree. It

reduces the memory consumption compared to FP-growth

Algorithm.

F. Broglet’s FP-Growth

 FP-Growth algorithm can be improved by Broglet’s FP

growth algorithm[6] . Initially it scans the frequencies of

the items and all infrequent items, that is, all items that

appear in fewer transactions than a user-specified

minimum number are discarded from the transactions,
since, they can never be part of a frequent item set. The

items in each transaction are sorted, so that they are in

descending order with respect to their frequency in the

database. It reduces the computational cost in FP-Growth.

G. DynFP-growth Algorithm

The main drawback of the Aprioi-like methods is at the
candidate set generation and test. This problem was taken

into consideration by introducing a novel, compact data

structure, named frequent pattern tree[3], or FP-tree, is

not unique for the same logical database. This approach

can provide a very quick response to any queries even on

databases that are being continuously updated. Because

the dynamic reordering process, Gyorodi C et al [7]

proposed a modification of the original structures, by

replacing the single linked list with a doubly linked list for

linking the tree nodes to the header and adding a master-

table to the same header.

H. Enhanced FP-Growth Algorithm

Enhanced-FP[8], which does its work without any prefix

tree and any other complex data structure. It processes the

transactions directly, so its main strength is its simplicity.

It initially scans the supports of the items and is calculated.

The items whose support count is less than minimum

support are discarded and specified as infrequent items.

Then the items in the database are sorted in ascending

order with respect to their support. And the initial
transaction database is converted in to a set of transaction

list, with one list for each item. These lists are stored in

array, each of which contains a pointer to the head of the

list. And the Transaction lists are traversed from left to

right for finding all the frequent item set that contain the

item the list corresponds to. Before a transaction list is

processed, its support count is checked, if it exceeds than

minimum support count than there must be a frequent item

set.

I. IFP-min Algorithm

IFP min algorithm[9] that uses a recursive approach to

mine minimally infrequent Item sets(MIIs). The infrequent

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7672

item sets are then reported and it gets pruned from the

database. The items presented in the modified database are

individually frequent. This algorithm then selects the MIIs
and it divides into two non-disjoint sets as residual

database and projected database. First the IFP-min

algorithm is applied to residual database, where the MIIs

are reported, if the database has the single item then it is

considered to be the item itself or as an empty set. Then

IFP-min algorithm is applied to projected database. The

itemsets in the projected database share the lf-item as a

prefix. The MIIs obtained from the projected database by

recursively applying the algorithm are compared with

those obtained from residual database. If an itemset is

found to occur in the second set, it is not reported;
otherwise, the lf-item is included in the itemset and is

reported as an MII of the original database. The use of

residual tree is to reduce the computational time.

J. Transaction mapping Algorithm

The transaction tree is similar to FP-tree but there is no

header table or node link. The transaction tree[10] has

compact representation of all the transactions in the

database. Each node in tree has an id corresponding to an

item and a counter that keeps the number of transactions

that contain this item in this path. Here we can compress

transaction for each itemset to continuous intervals by
mapping transaction ids into a different space to a

transaction tree. Advantage of this algorithm is the

performance can be improved compared to FP-Growth,

FP-Growth* algorithms.

Algorithm:

Input:

-Databse DB

Output:

-all infrequent item sets

(1) scan the database and identify the infrequent item
sets.

(2) construct the transaction tree with the count for each

node.

(3) Construct the transaction interval lists.

(4) Construct the lexicographic tree in a depth first order

keeping only the minimum amount of information

necessary to complete the search.

K. The Infrequent Weighted Itemset Miner

Algorithm

IWI Miner is a FP-growth-like mining algorithm[11] that
performs projection-based itemset mining. Hence, it

performs the main FP-growth mining steps:

(a) FP-tree creation and

(b) recursive itemset mining from the FPtree index. Unlike

FP-Growth, IWI Miner discovers infrequent weighted

itemsets instead of frequent (unweighted) ones. To

accomplish this task, the following main modifications

with respect to FP-growth have been introduced:

(i) A novel pruning strategy for pruning part of the search

space early and

(ii) a slightly modified FP-tree structure, which allows

storing the IWI-support value associated with each node.

Algorithm (IWI Miner(T, E))

Input:

-T, a weighted transactional dataset
Input:

-E, a maximum IWI-support threshold

Output:

-F, the set of IWI satisfying E

(1) F=0 /*Initialization*//*scan T and count the IWI-

support of each item */

(2) count the infrequent weighted item sets with the

support value.

(3) create header table which is a data structure which

holds information about total weight values.

(4) for each transaction, create equivalent transaction.
(5) create an FP-Tree, for each transaction.

(6) Iterate the process until all transactions are traced.

(7) create conditional pattern base

(8) calculate weight value.

(9) obtain the infrequent item sets.

To reduce the complexity of the mining process, IWI
Miner adopts an FP-tree node pruning strategy to early

discard items (nodes) that could never belong to any

itemset satisfying the IWI-support threshold. Hence, an

item(i.e., its associated nodes) is pruned if it appears only

in tree paths from the root to a leaf node characterized by

IWI-support value greater than E.

L. Minimal Infrequent Weighted ItemSet Miner

The MIWIMining procedure is similar to

IWIMining[1][11]. However, since MIWI Miner focuses

on generating only minimal infrequent patterns, the

recursive extraction in the MIWIMining procedure is

stopped as soon as an infrequent itemset occurs. It finds

both the infrequent itemsets and minimal infrequent

itemset mining. The advantage of MIWI algorithm is

reduction in generating the candidate sets, reducing the

computational Time, improved the efficiency of algorithm
performance compared to FP-Growth algorithm.

III. CONCLUSION

Weighted Itemset mining is an exploratory information

mining system generally utilized for uncovering profitable

connections among information. The main advantage to

perform Infrequentitemset mining was to improve the
profit of rarely found datasets in the transactions. The first

attempt is to find the frequent item set mining and then

discover the infrequent weighted item sets. Several

frequent itemset mining algorithms as Apriori to FP-

growth are there but generation of candidate sets is large.

As per the analysis of all the existing algorithms MIWI is

the most effective algorithm, which computes in very less

computing time, improves the efficiency of performance

when the database is large, computes the weighted

transaction.

REFERENCES
[1] Agrawal R, Imielinski T, &Swami , A. “Mining association rules

between sets of items in large databases”.In proceedings of the

1993 ACM SIGMOD International Conference on Management of

Data, pages 207-216, Washington, DC, 1993.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules,” Proc. 20th Int’l Conf. Very Large Data Bases

(VLDB ’94), pp. 487-499, 1994.

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7673

[3] Luca Cagliero and Paolo Garza “Infrequent Weighted Itemset

Mining using Frequent Pattern Growth”, IEEE Transactions on

Knowledge and Data Engineering, pp. 1- 14, 2013.

[4] Liu,G. , Lu ,H. , Yu ,J. X., Wang, W., & Xiao, X.. ”AFOPT:An

Efficient Implementation of Pattern Growth Approach”, In Proc.

IEEE ICDM'03 Workshop FIMI'03, 2003.

[5] BalazesRacz,” nonordfp: An FP-Growth Variation without

Rebuilding the FP-Tree”, 2nd Int'l Workshop on Frequent Itemset

Mining Implementations FIMI2004

[6] Grahne O. and Zhu J. “Efficiently Using Prefix-trees in Mining

Frequent Itemsets”, In Proc. of the IEEE ICDM Workshop on

Frequent Itemset Mining, 2004.

[7] Cornelia Gyorodi, Robert Gyorodi, T. Cofeey& S. Holban –

”Mining association rules using Dynamic FP-trees” – în

Proceedings of The Irish Signal and Systems Conference,

University of Limerick, Limerick, Ireland, 30th June-2nd July

2003, ISBN 0-9542973-1-8, pag. 76-82.

[8] Grahne G. and Zhu J., “Efficiently Using Prefix-Trees in mining

Frequent Item sets,” Proc. ICDM 2003Workshop Frequent Item set

Mining Implementations, (2003).

[9] A.Gupta, A. Mittal, and A. Bhattacharya, “Minimally Infrequent

Itemset Mining Using Pattern-Growth Paradigm and Residual

Trees,” Proc. Int’l Conf. Management of Data (COMAD), pp. 57-

68, 2011.

[10] J. Han, J. Pei, and Y. Yin, ”Mining frequent patterns without

candidate generation,” Procedings of ACM SIGMOD Intnational

Conference on Management of Data, ACM Press, Dallas, Texas,

pp. 1-12, May 2000.

[11] Han, J. , Pei, J. , & Yin, Y. “Mining frequent patterns without

candidate generation”. In Proc. ACM-SIGMOD Int. Conf.

Management of Data (SIGMOD ’96), Page 205-216, 2000.

BIOGRAPHIES

A. Sakthi Nathiarasan received the

B.Tech in Information Technology from
Sri Krishna College of Engineering

andTechnology, Coimbatore, India in the

year of 2013. He is currently doing his M.E

degree in Computer Science and

Engineering in Adhiyamaan College of Engineering,

Hosur and he published 5 research articles in international

journals and conferences. His area of interests includes

Adhoc Networks, Cryptography and Network security,

Utility Mining, Genetic Algorithms and Autonomic

Computing.

P. Kalaiyarasi received the B.E degree in
Computer Science and Engineering from

Sona College of Technology, Salem,

India. After that she worked as Software

Tester in Cognizant Technology

Solutions, Chennai. She is currently doing

her M.E degree in Computer Science and Engineering in

Adhiyamaan College of Engineering, Hosur and she

published 3 research articles in international journals and

conferences. Her area of interests includes Software

Engineering, Object Oriented Software Development,

Data Mining and Optimization Techniques.

M. Manikandan is currently working as

Assistant professor in the department of

Computer Science and Engineering in

Adhiyamaan College of Engineering,

Hosur, India. He obtained his M.E Degree

from Arunai Engineering College,

Tiruvannamalai under Anna University. He is having an

experience of about 7 years and published many research

papers in various international journals and conferences.

His areas of interests includes Artificial Intelligence,
Neural Networks, Algorithm Analysis and Soft

Computing.

