
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6428

Analysis and Comparison between

Multiprocessing based and Middle ware based

Parallel Remote administration Framework

Vinay V
1
, B.K Srinivas

2

Student, Department of Information Science and Engineering, RVCE, Bangalore, India1

Assistant Professor, Department of Information Science and Engineering, RVCE, Bangalore, India2

Abstract: Remote administration is necessary in vast majority of enterprise infrastructure management. Installing

software, applying patches or changing system configuration are all part of system administration job. Typically remote

administration is done by accessing remote system through network by means of client-server protocol using locally
available administration tools (remote terminal or remote desktop. Parallel remote administration frameworks are used

in enterprise environment where similar administration tasks need to be performed on many systems. Different

approaches are used to achieve remote administration on multiple machines in parallel. One of the method is using

multiprocessing and other is using message oriented enterprise middle-ware. This paper gives the analysis of these two

different approaches by comparing the performance, scalability, reliability of the framework in enterprise environment.

The analysis is done against python „fabric‟ api for multiprocessing approach and „mcollective‟ orchestration

framework for middleware based approach.

Keywords: remote administration, agent-based orchestration, fabric api, mcollective

I. INTRODUCTION

Remote administration can be referred as a method to
controlling a computer from a remote location.

Software/frameworks that allow the remote administration

is becoming increasing common and it is used when it is

difficult to be physically near a system to use it[1].

Remote computer may be referring to computer in next

room or on the other side of the world. In recent years,

remote administration is becoming increasingly necessary

where systems are deployed in cloud which is difficult to

know the actual location of the physical system.

These machines are administered by accessing the system
through cryptographic network protocol SSH (Secure

Shell). SSH client is typically used to connect to the SSH

daemon running on the remote machine. „Fabric‟ is a

python library and command-line tool to use SSH for

system administration tasks. It provides set of operations

for executing local and remote shell command. „Fabric‟

api supports parallel execution which is implemented

using python multiprocessing module. We can execute set

of administration tasks on multiple machines in parallel.

So no more running the same tasks machine by machine to

make one change on number of machines.

It is simple tool that will make administrator‟s life so

much simpler. Not only can run simple tasks via SSH on

multiple machines but you can combine arbitrary python

code to make, complex, robust, elegant applications for

administration and deployment tasks. “MCollective” is an

orchestration framework for parallel job execution

systems. “MCollective” uses message broker middleware

which supports Publish-Subscribe messaging framework

and modern philosophies like real time discovery of

network resources using metadata. Used broadcast

paradigm for request distribution and all servers get
requests at same time. Uses the ability of middlware

clustering, routing and network isolation to realise secure

and scalable orchestration framework setup. It uses

STOMP (Simple Text Oriented Messaging Protocol) to

stream the requests and responses so that it is interoperable

across different platforms[2].

The goal of this study is to analyse these two different

approaches i.e., to compare the performance, scalability

and reliability of the framework on large scale system

administration. The analysis is configured to orchestrate
16 remote machines in parallel on local LAN.

II. ARCHITECTURE

i. Fabric

As discussed in introduction part fabric uses SSH to

connect to remote machine. In fact Fabric uses paramiko

module that implements the SSH2 protocol secure

connections to remote machines. Fabric supports both

serial and parallel execution of command on remote

machine.

Default behaviour is serial i.e., commands will be
executed on remote machines one after the other. In order

to support parallel execution the Fabric library uses python

multiprocessing module library. It creates a number of sub

processes equal to number of machines.

Each sub process will make direct connection to remote

machine individually using SSH protocol and execute the

commands on remote machine. The architecture diagram

of python fabric is shown in fig 1.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6429

Fig 1. Architecture of python fabric

Python supports following set of commands for fabric api

that are simple and powerful.

 local - Execute a local command

 run – Execute a remote command on all specified

hosts with user level permission.

 sudo – Execute a remote command on all specified

host with sudo permission

 put – copy a local file to remote destination

 get – download a file from remote server to local

system

 prompt – prompt the user with text and return the

input

 reboot – reboot the remote machine, disconnect and

wait for wait seconds

ii. mCollective

MCollective is a RPC server written in ruby which relies

on modern tools like publish – subscribe model which uses

enterprise middle to forward request and responses

between client and servers. Mcollective communication
pattern is highly dependent on routing topology supported

by AMQP (Advanced message queuing protocol). Each

routing topology of AMQP has its own use cases..

The following are the different scenarios that explain

different routing topologies supported by AMQP protocol.

1. Producer – Consumer

2. Worker – Queue

3. Broadcast

4. Message Routing

The conceptual diagram depicting all these routing
scenarios are shown in fig 2, fig 3, fig 4 and fig 5

respectively.

Fig 2. Producer - Consumer

Fig 3. Worker - Queue

Fig 4. Broadcast

Fig 5. Routing

mCollective uses combination of routing, broadcast and

Producer – Consumer routing pattern to communicate with

remote server and get the response back from the server to

the client.

The architecture diagram of mCollective is shown in fig 6.

As shown in architecture the middleware (message-

broker) is a dedicated server (rabbitmq or activemq). We

can create a cluster of these middleware servers to increase

the scalability and reliability of the system. MCollective

(server) should be installed on all remote machines and

configured to connect to middle-ware with authentication

details. similary Mcollective client is installed on different

administration machine and configured to connect to

middleware with authentication details and metadata
information.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6430

Each mCollective server connects to middleware and

creates a unique queue in the middleware and subscribes

the queue with exchanges by binding queue and exchanges
with routing keys. The routing keys that bind queue and

exchange will be identified by agent plugins written in

each mcollective server. We can write custom plugin to

mcollective server based on requirement and platform.

When request is initiated from mcollective client, client

first discovers the machines for configured timeout period.

The mcollective client creates a response queue for each

request and sends the request to exchange with appropriate

routing key based on the user requests and waits for the

response for configured timeout period by listening to

response queue, the exchange will deliver the request to
the queues by broadcasting the request to the queues that

bind to the routing key specified by the client. The

mcollective server starts consuming the queue by

retrieving each request at a time from the queue. The

request will be handled and executed by respective agent

plugins in the server. The responses are again queued in

response queue created by client. The client starts

consuming all the responses from the response queue for

configured timeout period. Mcollective client ships with

generic rpc client using which we can invoke any agent

plugin at mcollective server. This generic rpc client will

display the responses from the mcollective on the display
in raw format. We can write custom clinet application to

customize how to send the request and how to process the

responses received by each remote machine[5][6].

III. COMPARISION

A. Communication

In multiprocessing approach the admin machine will make

direct connection to each remote machine individually

with the help of SSH protocol. This protocol is consumes

more network resources and process resource of admin

machine which limits the scalability. Whereas in
middleware approach there will be no direct connection

between admin machine and remote machine. But admin

machine will make only one connection with middleware.

So in practical it requires same resource whether it needs

to administer one remote machine or thousand. So there is

not limit for scalability from admin machine point of view.

B. Scalability

In multiprocessing approach the numbers of parallel

connections that can be made with remote machines are

limited by resources of the admin machines. Since number
of processes that can be created in a system is limited,

number of remote machines that can be administered at a

time is also limited. But in middleware approach the

middleware is dedicated and can create a cluster of these

middleware to increase the scalability of the system. The

adding or removing the middleware is dynamic and it

doesn‟t incur a downtime[8].

C. Reliability

In multiprocessing approach there is no single point

failure, if any one connection terminates, it does not affect

the operation of other systems. The reliability depends on
the network, if network connection terminates we need to

re-initialize the request again for that machine and we

cannot resume the previous operation.

In middleware approach if there is only one middleware

then the entire operation of the system depends on one

middleware. If this middleware fails we cannot

communicate with any of the system. But with the ability

to create a cluster we can increase reliability of the system.

If one machine fails the other machine will still take care

of the operation [9].

D. Security

In multiprocessing approach we are giving administrator

right of the system to the admin. If this administrator is

third party we need to compromise the privacy since he

has access to the whole system. We cannot restrict the

admin to only certain operations.

But in middleware approach the operation he can perform

remotely depends on the agent plugins installed on each of

the remote machines. And admin will not have access to

the entire system. The actual owner of the system can

control what third party admin can do to his system.

E. Interoperability

Fabric relies on SSH, SSH is platform dependent and
doesn‟t support on all platforms. Mainly it doesn‟t support

world‟s most widely used operating system “windows”.

So we cannot administrate windows machine remotely

using fabric framework. But mcollective is platform

independent, since mcollective is written on platform

independent language ruby. The only pre-requisite is ruby

interpreter should be available on remote machine. We can

write custom plugins for administrator based on platform.

F. Performance

Fabric creates separate sub process for each remote

machine and creates separate connection attempts for each
request and each command it executes. There will be small

delay in while creating a process and making a SSH

connection with the remote machine. If number of

processes increases there will be decrease in system

performance due to frequent cpu scheduling and memory

swapping.

Whereas mcollective creates only one connection and

retains its connection state for ever from remote machine

to the middleware. Every request that sends from

middleware to remote machine and response from remote
machine to middleware uses the same connection. This

eliminates the time required to connect and authenticate

the system[4].

G. Additional software requirement

Fabric uses SSH for connecting to remote machine, so

SSH server should be installed and SSH daemon should be

running on remote machine. For fabric python interpreter

is required with its supporting libraries. For mcollective,

mcollective server should be installed and its daemon

should be running on remote machine. It also requires
some ruby libraries which are used to connect to

middleware.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6431

IV. EXPERIMENTAL ANALYSIS
For experimental analysis we used python fabric for

multiprocessing based parallel remote administration
framework and mcollective for middleware based

approach all the remote machines and admin machine are

Linux Ubuntu platform. We configured around hundred

machines to administrate with both fabric and mcollective.

Fig 7 shows the graph that compares the performance

between fabric and mcollective.

For experimental purpose we used minimal system

requirement setup of admin machine and remote machines

are with 128 MB RAM, single core 2.4 GHz Intel Xeon

processor Virtual Machine and all machines are in virtual
LAN. From the experiment we found that with the above

configuration the number of parallel connections from

admin machines to remote machines is 18, so we limited

the number of parallel connections to 18 at a time.

We tried to get the list of software installed on all remote

machines. From the experiment it is found that the time

required to administrate increases if number of machines

increases in multiprocessing approach whereas in

middlware approach the time remains almost constant

even if number of machines increases.

V. CONCLUSION

Remote administration has become one of the most
essential requirements in modern day cloud computing

era. Since, there are too many different tools are available,

enterprise systems admins need very efficient and scalable

approach to remote deployment and administration.

Fig 7. Performance comparison between fabric and

mcollective

Above analysis shows the comparison between two

different tools which uses two different approaches to

orchestrate remote machines. From the experiment
analysis it is found that mcollective which uses

middleware approach has more efficient, scalable,

interoperable and secure compared to fabric which uses

multiprocessing approach.

ACKNOWLEDGEMENT

I would like to thank Mr. B.K Srinivas for guiding me in

this work in RVCE college, Bangalore, Karnataka.

REFERENCES
[1]. Schmelzer, S; von Suchodoletz; Schneider, G; Weingaertener, D;

de Bona, L.C.E; Carvalho,C., “Universal remote boot and

administration service”, Network Operations and Management

Symposium (LANOMS), Page 1-6, Oct 2011

[2]. Renhak, K; Seitz, J., “User centric multi-purpose messaging

framework” IEEE, International Conference on ICT Convergence

(ICTC), Page 66-71, Oct 2013.

[3]. Johnsen, F.T; Bloebaum, T.H; Avlesen, M; Spjelkavik, S; Vik, B.,

“Evaluation of transport protocols for web services” IEEE, Military

Communications and Information systems conference (MCC), Page

1-6, Oct 2013.

[4]. Fernandes, J.L; Lopes, I.C; Rodrigues, J.J.P.C; Ullah, S.,

“Performance evaluation of Restful Web services and AMQP

protocol” IEEE, 5
th
 International Conference on Ubuquitos and

Future Networks (ICUFN), page 810-815, July 2013.

[5]. Fan Bai; Wang Tao., “Message Broker Using Asynchronous

Method Invocation in Web Service and Its Evaluations” IEEE, 3
rd

Conference on Software Testing, Verification, and Validation

Workshops (ICSTW), Page 265-273, Apr 2010.

[6]. Oh, F.Y.K; Shin-gyu Kim; Hyeonsang Eom; Yeom, H.Y; Jongwon

Park; Yongwoo Lee., “A Scalable and adaptive cloud-based

message brokering service” IEEE, 13
th
 International Conference on

Advanced Communication Technology (ICACT), Page 498-501,

Feb 2011.

[7]. Pallickara, S; Gadgil, H; Fox, G., “On the Discovery of Brokers in

Distributed Messaging Infrastructures” IEEE, International, Cluster

Computing, Page 1-10, Sept 2009.

[8]. Aggarwal, V; Aggarwal, SS; Sharma, V.S; Santharam, A., “A

Scalable Master-Worker Architecture” IEEE, SC Companion,High

Performance Computing, Netwoking, Storage and Analysis (SCC),

Page 1268-1275, Nov 2012.

[9]. Anand M., “Always On: Architecture for High Availability Cloud

Applications” IEEE, International Conference on Cloud Computing

in Emerging Markets (CCEM), Page 1-5, Oct 2012.

	Abstract: Remote administration is necessary in vast majority of enterprise infrastructure management. Installing software, applying patches or changing system configuration are all part of system administration job. Typically remote administration is...
	I. INTRODUCTION
	V. CONCLUSION

