
 ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 3, March 2014

Copyright to IJARCCE www.ijarcce.com 5841

Diagnostic Bundle Consolidation

Patel Rushi J
1
, Smitha G. R

2

Student, Department Of Information Science, R.V. Collage of Engineering, Bangalore, India1

Assistant professor, Department Of Information Science, R.V. Collage of Engineering, Bangalore, India2

Abstract: Failure diagnosis is finding the correct cause of failure, and gives the enough information to correct it. And it
is one of the major challenges that home users and software administrators face today in the distributed software. The

problem is more because there are so many different components which collaborate to realize a particular service and

these components belong to different functional domains as well as physical locations. With increasing number of such

services, it is important to design systems which enable easy diagnosis of problems encountered and allow determining

the root cause of the failures. Diagnostic bundle consolidation mechanism provides a single point of management for

creation and collection of the diagnostic bundle within the Snap Creator Framework. The log files, command outputs,

etc. are scattered around the Snap Creator agent. It can consolidate diagnostic files based on various scope parameters

as needed to meet effective troubleshooting requirements. This diagnostic bundle consolidation work is based on java

REST architectural style, which provides light weighted communication between server and agent.

Keyword: Snap Creator Framework (SCF), Snap Creator (SC), REST, Restful.

I. INTRODUCTION

Snap Creator framework is a product used for data

protection (backup, restore, and clone) of application and

virtualization environment consuming remote storage. It is

a distributed ecosystem involving server and multiple

agent hosts running various components related to their

respective application/virtualization domains. It is OS-

independent. Snap Creator Framework integrates NetApp

data protection with a broad range of third-party
applications. Snap Creator plug-ins integrates different

features with third-party applications, operating systems,

and databases. Snap Creator also accommodates custom

plug-ins and has an active developer community. The

Snap Creator Framework provides:

 Application-consistent data protection. Users get a
centralized solution for backing up critical

information, integrating with existing application

architectures to assure data consistency and reduce

operating costs.

 Extensibility. Achieve fast integration using Storage

modular architecture and policy-based automation.

 Cloud readiness. OS-independent Snap Creator

functionality supports physical and virtual platforms

and interoperates with IT-as-a-service and cloud

environments.

The current troubleshooting model used in Snap Creator

has limitations in its capability, where collecting
diagnostic information is not exhaustive and flexible. The

troubleshooting capability needs to be extended to enable

the following:

 Exhaustive agent side diagnostic information

collection

 Diagnostic information collection based on various

scopes like Snap Creator profile, Snap Creator

configuration, Snap Creator plugin, Snap Creator

workflow etc.

 Driving the diagnostic bundle creation and collection

from the centralized Snap Creator server, and pulling

the diagnostic bundle to the server.

Figure 1: Working architecture diagram of diagnostic

bundle consolidation.

This paper have included an enhanced way of collecting

diagnostic information spread across multiple components

on multiple hosts, for more effective troubleshooting in the

Snap Creator environment. The agent implements 2 REST

APIs one to create the diagnostic bundle, second to pull

the bundle from the agent to the server. Log files and other

diagnostic data can be filtered based on various scope

parameters specified as part of the REST API.

The agent implementation of diagnostic bundle creation

consists of 2 parts one a generic module which

consolidated generic diagnostic data, second a plugin

module where a Snap Creator plugin can implement

diagnostic data collection specific to the agent calls the

generic as well as plugin specific collection logic based on

the scope parameters passed to it, and consolidates it to

http://www.ijarcce.com/

 ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 3, March 2014

Copyright to IJARCCE www.ijarcce.com 5842

form a single archive. The entire process is driven from

the SC server which invokes the agent REST APIs to

consolidate and download the bundle from the agent to the
server.

Figure 2: Block diagram for diagnostic consolidation

bundle.

II. STATEMENT OF THE PROJECT

PROBLEM

Despite spite the fact that manufacturers of the distributed

architecture software put great strengths only in its
perfection and increase of work reliability periodically,

nevertheless, there arise refusals of the software

component at remote location. The diagnostic process of

this distributed component is complex system. Qualified

experts have to go to the remote locations where, the

software components are installed and correct it. However,

elimination of the found error frequently is limited only to

simple actions, (for example, replacement of the failed

component) not demanding high qualification. As a rule,

for detection and elimination of malfunctions the

consumer should address the manufacturer of the software,

It frequently causes significant transport expenses. If the
software is supplied with system allowing the expert to

have remote diagnostics it remote, giving the consumer the

recommendation on elimination of the found errors, above

it is possible to avoid transport expenses in many cases.

All above shows, that development of such system is

necessary and justified.

III. PRACTICAL REALIZATION

To make the troubleshooting mechanism easy, diagnostic

should be done on the server side based on diagnostic

collection method which includes the vital information
regarding the failure in the snap creator operations. The

diagnostic information’s are collected from the agent side

by invoking the corresponding APIs.

Initially when the error occur in the snap creator

framework, users invoke the diagnostic consolidation

method from the server side, In that it will collect local

diagnostic information on the server side and invoke

createDump API on the agent side, this API include scope

parameter for limiting the diagnostic information. This
parameter can be profile name, configuration name,

workflow ID, and plugin name. The agent side the

collection is done in two parts. One the agent does the

generic diagnostic collection. After that it will invoke

external plugin specific diagnostic collection with the

scope parameter, the plugin do diagnostic collection based

on the scope defined and send the generated diagnostic

information to the agent. The agent will combine both

generic diagnostic information and plugin specific

diagnostic information in to the archive file and store it to

temporary location and send that location information to
the server. Then server invokes pullfile API to download

archive file on the agent side to the server side, and it will

combine both the diagnostic information and give it to

troubleshooter.

IV. THE RESTFUL WEB SERVICES

REST is not a protocol; it’s a style of the Web

architecture; abstraction and description to the design

principle of Web architecture. In other words, Web is the

instance of the REST system. REST described how to

design and develop distributed system.

The Goals and Design Principle of REST

The goals [1] of REST are the followings:

1. Scalability of component interactions

2. Generality of interfaces

3. Independent deployment of components

4. Intermediary components to reduce

5. Intermediary components of reducing interaction
latency, enforcing security, and encapsulating

legacy systems

The components in the REST system must comply with

the following constraint [1]:

1. Identification of resources

2. Manipulation of resources through

representations

3. Self-descriptive messages

4. Hypermedia as the engine of application state

The Idea of REST
In the REST system, all the resources had the URI. Using

the GET, POST, DELETE and PUT as the general

interface of the resources, user visited the resources via

them. Developers must consider [4] each method’s

expected semantics to decide which methods are suitable

for each resource. GET, PUT, and DELETE, for example,

must be idempotent, and GET must be safe for clients to

call repeatedly because all it does is return a representation

of a resource. The PUT method lets a client replace a

resource state with a new state, whereas clients use
DELETE to remove resources. Both obviously have side

effects, but both are idempotent because calling them

repeatedly has the same effect as calling them once. POST

can be made to perform virtually any action, but in

RESTful systems, it’s normally used to create or extend

resources, and so it isn’t expected to be idempotent or free

of side effects.

http://www.ijarcce.com/

 ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 3, March 2014

Copyright to IJARCCE www.ijarcce.com 5843

Not everyone agrees [4] that REST is easy, of course. One

frequently mentioned issue is a lack of tools specifically;

those that fit within the interactive development
environments (IDEs) that many enterprise developers use

to help them write and maintain their code. Given that

IDEs are helpful only because they automate activities and

approaches that developers have already manually proven

to be worth automating, this “lack of tooling” argument is

somewhat off the mark. With the right language-specific

patterns and idioms to follow, existing IDEs work just fine

for RESTful service development.

V. RESULT

The diagnostic capability in Snap Creator shall have the

capability to be driven from multiple contexts. The

diagnostic component in Snap Creator shall function based

on the "scope" in which it is operating on, which shall be
determined from the context. Following are the scopes in

which diagnostic collection can be done:

1. Global scope - Typically run by the SC admin user

from a diagnostic page in SC GUI, multiple

profiles/configs are specified for collecting diagnostic

information, and it will collect all the information

available on SC agent and SC server.

2. Profile scope - SC user specifies SC profile(s) for

collecting diagnostic information based on the profile

name specified.

3. Config scope - SC user specifies SC config(s) for
collecting diagnostic information based on the config

name specified.

4. Workflow/Operation scope - SC user specifies SC

workflow/Operation scope collecting diagnostic

information based on the workflow/Operation scope.

Table 1: Diagnostic Bundle Consolidation Result.

Here, if user doesn’t specify any scope then it is global

scope, and this mechanism will collect all the data from

the entire component. And as the data will be in huge

amount the time takes to do this operation is more. If

config_name is provided as one of the scope parameter

then also the data file collected will be in huge numbers

and time taken is slightly lesser then the global scope. As

if user specify all the scope parameter then the data

collected will be only limited to that scope only and the

time taken to collect it will be very less, and
troubleshooter can easily troubleshoot the error.

Figure 4: Diagnostic Result

Figure 5: Diagnostic Result

VI. CONCLUSION

In general distributed software diagnostic can be done by

subject being co-located with the person or system doing

the diagnostics, instead of doing so with remote
diagnostics the subjects can be separated by physical

distance and important information is exchanged either

through wire or wireless. This approach can be used to

improve reliability of vital or capital-intensive installations

and reduce the maintenance costs by avoiding unplanned

maintenance, by monitoring the condition of the system

remotely. This can be even making simpler by using scope

field to filter out unwanted diagnostic data.

REFERENCES
[1] Mohsen Rouached and Hassen Sallay, RESTful Web Services for

High Speed Intrusion Detection Systems, 2013 IEEE 20th

International Conference on Web Services

[2] Hongjun Li, RESTful Web Service Frameworks in Java, 2011 IEEE

International Conference on Signal Processing, Communications

and Computing (ICSPCC)

[3] P. Cesare and W. Erik. Restful web services: principles, patterns,

emerging technologies. In Proceedings of the 19
th
 international

conference on World wide web, WWW ’10, pages 1359–1360,

New York, NY, USA, 2010. ACM.

[4] Koizumi, N, Construction Methodology for a Remote Ultrasound

Diagnostic System, 2009 Robotics, IEEE Transactions

on (Volume:25 , Issue: 3)

[5] J. Sandoval, Restful Java Web Services . Packt Publishing, 2009.

[6] L. Richardson and S. Ruby, RESTful Web Services .O’Reilly

Media, 2007.

[7] S.Vinoski, RESTful Web Services Development Checklist.

[8] D.Brown,C.M.Davis and S.Stanlick, Struts 2 in Action.

Manning,2008

http://www.ijarcce.com/

	Koizumi, N, Construction Methodology for a Remote Ultrasound Diagnostic System, 2009 Robotics, IEEE Transactions on (Volume:25 , Issue: 3)

