
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6192

Simulation and Analysis of Puncturing in Turbo

Code using MATLAB

Jitendra Prakash Shreemukh
1
, Prof. (Dr.) B.S. Rai

2

Department of Electronics and Communication Engineering , Madan Mohan Malaviya University of Technology,

Gorakhpur, India1,2

Abstract: In this paper, we proposed some selection criteria for the puncturing vector to achieve excellent performance

in terms of BER and gives useful guideline for design of puncturing vector based on simulation result. In this paper, we

have compared the performance of turbo code for different puncturing location for two parity branches. Punctured

turbo codes may show poor performance due to uneven error protection of input bits after puncturing. The focus of the

work is on understanding and design of Punctured Turbo codes. This includes through investigation of central

components that influence Turbo code performance, such as encoders and the interleaver. The investigations are carried
out for transmission on additive white Gaussian noise channels. For our simulation size of interleaver selected is

1024*1024 and keeping the number of iteration 6. Simulations are conducted on MATLAB at maximum SNR range of

6 dB. In addition we also simulate the performance of punctured turbo codes with increasing the number of iteration

and its effect on the performance is analyzed.

Keywords: Turbo codes, Puncturing, iterative decoding, Error floor, AWGN, MATLAB.

I. INTRODUCTION

This paper concern Turbo codes [1, 2] one of the most

powerful types of forward error correcting channel codes.

Forward error correcting channel codes are commonly
used to improve the energy efficiency of communication

systems. On transmitter side, an FEC encoder adds

redundancy to the data in form of parity information. Then

at the receiver side, a FEC decoder is able to exploit the

redundancy in such a way that a maximum number of

channel errors can be corrected. Because more channel

errors can be tolerated with than without an FEC codes.

Coded system can afford to operate with a lower transmit

power, transmit over longer distances, avoid more

interference, use smaller antennas, and transmit at a higher

rate. A binary FEC encoder takes k bits at a time and
produces codeword of n bits (n>k). There are 2n possible

sequences of n bits. The ratio k/n is called the code rate

and is denoted by r. For every combination of code rate,

codeword length, Modulation format, channel type and

receiver noise power, there is practical lower limit on

amount of energy that must be expended to convey one bit

of information. This limit is called as Shannon capacity

limit [3]. Each new generation of FEC code would

perform incrementally closer to the Shannon capacity than

the previous generation, as recently as the early 1990s the

gap between the theory and practice for binary modulation

was about 3dB. In other words, they required about twice
as much energy as the theoretical minimum amount

predicted by Shannon capacity limit. A major

advancement in coding theory occurred in 1993, when a

group of researcher developed Turbo codes. In 1993

Berrou, Glavieux and Thitimajshima [1, 2] proposed a

new class of convolution codes called turbo codes

whose performance in terms of Bit Error Rate (BER)

are close to the Shannon limit. The initial result showed

that turbo codes could achieve energy efficiencies within

only a half decibel of the Shannon capacity. In now days,

Turbo coding techniques are used by NASA for deep

space communication, digital video broadcasting, and in

UMTS. The basic idea of turbo code is to use two
convolutional codes in parallel with some kind of

interleaving in between. Fig. 1 shows turbo encoder

consisting of two rate-1/2 binary RSC encoders, an

interleaver, and a puncturing block. The simplified turbo

code block diagram in Figure 1 shows only two branches.

In general, one can have multiple turbo encoders with

more than two branches. Length of parity bits are same as

that of the information sequence and rate of turbo code is

1/3 (one input and three output sequence that is one

information bits and two parity bit sequences from two

RSC encoder). Turbo codes have three enhancements in
the coding area. These are the random interleaver and two

recursive systematic convolutional (RSC) encoders of rate

1/2. Convolutional codes can be used to encode a

continuous stream of data, but in this case we assumed that

data is configured in finite block size – corresponding to

the interleaver size. The frame can be terminated i.e. the

encoders are forced to a known state after the information

block. The termination tail is then appended to the

encoded information and used in the decoder. We can

regard the turbo code as a large block code. The

performance depends on the weight distribution – not only

the minimum distance but the number of words with low
weight. Therefore we want input pattern giving low weight

words from the first encoder to be interleaved to patterns

giving words with high weight for second encoder. One of

the most interesting features of turbo code is that it is not

just a single code. It is combination of two codes that work

together to achieve a synergy that would not be possible

by merely using one code by itself. Although the two

constitute encoders may be different, in practice they are

normally identical. The input data stream and parity of the

two parallel encoders are then serialized into a single turbo

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6193

code word. The interleaver is crucial part of turbo encoder.

It is simple device that rearranges the order of the data bits

in a prescribed, but irregular manner. Although the same
set of data is present at the output of interleaver, the order

of these bits has been changed. Thus output of the second

encoder will almost surely be different order than the

output of first encoder. Turbo code interleaver tries to

randomize ordering of data in an irregular manner.

Figure 1. Basic block of turbo encoder

High weight code words are desirable because it means

that they are most distinct, and thus decoder will have an

easier time distinguishing among them. While a few low

weight code words can be tolerated, the relative frequency

of their occurrence should be minimized. Since the weight

of turbo code word is simply the some of the weight of

input and parity output of the two RSC encoders, we can
allow one of these parity outputs to have low weight as

long as other has high weight using interleaver. Because of

the second encoder input has been scrambled by the

interleaver, its parity output is quite different from the first

encoders. Thus it is possible that one of the two encoders

will produce a low weight output. Because of the

interleaver probability that both the encoder

simultaneously produces a low weight output is extremely

small. This improvement is called the interleaver gain.

Because of the interleaver gain performance of turbo

codes improves. Almost any type of encoder could be used

for the two constituent encoders. Turbo codes almost use
recursive systematic convolutional (RSC) encoders.

II. PUNCTURED CODES

Puncturing is elimination of some bits of a codeword

before of sending out it and replacing zero instead of these

bits before of decoding. Puncturing is an effective

technique to increase the data rate [4]. Puncturing is a

tradeoff between code rate and system performance.

Because due to puncturing code rate improves but the

same time code performance degrades due to less number

of information bits transmitted. Using the technique of
puncturing, it is possible to provide different turbo-codes

of various rates. The codes obtained after puncturing gives

performance very nearer to those obtained with optimal

codes (un-punctured codes) of the same rate. In certain

application such as satellite communications, link

reliability is of prime importance and, consequently, low

rate codes are often used. However, bandwidth occupancy

is of much greater importance in wireless communications

and so high rate codes are preferred. A high rate binary

convolutional code can be obtained by periodic

elimination, known as puncturing, of particular code bits

from the output of a parent low rate convolutional
encoder. Extensive analysis on punctured convolutional

codes has shown that their performance is always inferior

to the performance of their low rate parent codes [5, 6].

Rates higher than 1/3 can be obtained by periodic

elimination of specific code bits from the output of a rate-

1/3 turbo encoder. Some of puncturing patterns are

unsuitable and degrade the performance of turbo code.

Unsuitable patterns are those patterns which make

impossible convergence of iterative decoding and

recovering of message because of inordinate elimination

of "1" bits of turbo coded sequence. It is clear that both
puncturing pattern and interleaving pattern affect the

performance of turbo codes [7, 8]. Puncturing scheme has

been applied to turbo codes to increasing the code rate

without increasing the complexity of the decoder. Even

through some combination of puncturing pattern and

interleaving pattern can lead to non-optimal performance

of turbo code.

III. SOME NOTES on DECODING

In the case of turbo codes, there are two decoders for

outputs from both encoders. Both decoders provide

estimates of the same set of data bits, albeit in a different
order. If all intermediate values in the decoding process

are soft values, the decoders can gain greatly from

exchanging information, after appropriate reordering of

values. Information exchange can be iterated a number of

times to enhance performance. At each round, decoders re-

evaluate their estimates, using information from the other

decoder, and only in the final stage will hard decisions be

made, i.e. each bit is assigned the value 1 or 0. Such

decoders, although more difficult to implement, are

essential in the design of turbo codes. One of the novel

attributes of turbo codes is their ability to compose „larger
codes‟ that can be coded with reasonably low complexity.

This is achieved by iterative decoding the two constituent

codes that together compose a turbo code. The block

diagram of an iterative decoder is shown in figure 2. It

consist two constituent decoder, one for each constituent

code, and the interleaver/ deinterleaving blocks required to

convert the sequences between the code spaces. Each

decoder processes input blocks of size N, i.e. size of the

interleaver. After the first decoder has perform its

decoding using the received channel symbols associated

with the first code, it passes a block of soft information of
length N to the second decoder. Next the second decoder

uses the information from the first decoder together with

the received channel symbols associated with the second

code. Hopefully the second decoder performs better than

the first, since it has access to more information. Further,

if the first decoder is presented with results from the

second decoder it is conceivable that it might improve its

performance, compare to first decoding attempt. Thus, in

the second decoding round of the first decoder, it uses the

same channel information as in the first round, together

with the information passed from second decoder. One

decoding iteration is completed after one pass of both the
first and second constituent decoders. The decoding

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6194

performed by one constituent decoder is referred to as a

half-iteration. Ideally, the information passed between the

constituent decoder should consist of prior knowledge of
the probability distribution of each in the information

sequence. As such, the decoder inputs used as a priori

information should depend only on transmitted

information sequence and not on the noise on the other

decoder inputs.

Figure 2. An Iterative turbo code decoder

By using decoders producing a posteriori probabilities so

called APP or soft-output decoder. The posteriori

probabilities after decoding the first constituent code can
be used as a priori input when decoding the second

constituent code.

III. SIMULATION RESULTS

In this section MATLAB simulations are shown. The

performance of turbo codes is evaluated in terms of BER.

The main tool for the performance evaluation of punctured

turbo codes is computer simulation. Computer simulation

generates reliable probability of error estimates as low as

10-6 given by Shannon capacity limit. Computer simulation

is useful for rather low SNRs since the error probabilities

for larger SNRs are difficult to simulate. All simulations
were taken with MATLAB. The number of iterations

between the decoders was set at 6. In our simulation, the

input data frame size is 1024 bits, i.e. the size of punctured

turbo code interleaver. Channel model used in simulation

is AWGN channel. The decoder implementation is

complex and computationally extensive. It includes

processing using a number of loops. The decoder decodes

iteratively checking the number of errors after every

iteration. If the number of errors is zero for iteration, the

code will not execute the next iteration to decrease

processing load. The maximum range of SNRs for

simulation in dB is 6 and code rate of turbo codes is 1/3.

Figure 3(a): BER versus Eb/No in dB for turbo code under

puncturing arrangement [010001] for both parity branches

Figure 3(b): BER versus Eb/No in dB for turbo code under

puncturing vector arrangement [011100] for parity bits

Figure 3(a) shows the bit-error rate versus signal-noise

ratio plots for interleaver size 1024*1024, R= 1/3 and

number of iteration=6 with puncturing vector [010001].

Figure 3(b) shows a similar graph but was simulated for

interleaver size of 1024*1024 and puncturing pattern is
[011100] with maximum range of SNR is 6 dB.

Figure 3(c): BER versus Eb/No in dB for turbo code under

puncturing arrangement [101010] for parity branches

In Figure 3(c) and Figure 3(d) the performance of turbo

code is compared at interleaver size of 1024*1024 and

code rate 1/3 with puncturing vector [101010] and

[010101] respectively. Puncturing can be applied to the

systematic bits as well as to the parity bits or both. But
puncturing the information bits causes serious degradation

in system performance [10]. Hence it is recommended to

avoid puncturing information bits and keep puncturing the

parity bits. In our simulation, we use puncturing vector of

period 6. In figure 3(c) and 3(d) puncturing pattern is

equally distributed between two parity branches and also

maximally scattered within each branch. In figure 3(b)

puncturing vector is equally distributed but not well

scattered. The puncturing vector used in figure 3(a) is an

extreme case of puncturing in which puncturing is neither

equally distributed nor well scattered. The puncturing
vector used in figure 3(a) for simulation delete maximum

number of bits from the two parity branches among all the

combination used in our simulation. Among all the

simulation result, figure 3(c) and figure 3(d) shows the

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6195

best performance. Performance of puncturing vector used

in figure 3(b) is slightly inferior with number of iteration

as compared to figure 3(c) and 3(d). Figure 3(a) shows
much worse performance among all. The punctured vector

used for simulation result in figure 3(c) and 3(d) are one

cyclic shift of each other, and their performance are close

enough to each other for few iteration and hence we can

conclude that cyclic shifting the puncturing vector have

essentially the approximately same performance. In our

simulation analysis we observed that when number of

iteration increases the performance improves but after

some iteration there is no significant improvement in BER.

Figure 3(d): BER versus Eb/No in dB for turbo code under

puncturing arrangement [010101] for parity bits

IV. CONCLUSION

In this paper performance of punctured turbo code has

been compared in terms of BER by varying puncturing

pattern for two parity branches. Performance of turbo code

improves by puncturing when puncturing vector is equally

distributed and maximally scattered. For this case we

achieved excellent performance of turbo code.

Performance of turbo codes decreases when puncturing

vector is not equally distributed or not maximally
scattered. For this case performance of turbo code shows

some degradation. We also conclude that the one cyclic

shift of puncturing vector is not going to affect

performance much poorer. Our investigation leads to

provide a set of useful guideline for constructing efficient

puncturing vector to achieve acceptable performance. The

turbo code performance improves with the increase in the

number of iterations. However, the rate of improvement

decreases. Hence, after a specific number of iterations, the

BER stays constant and does not decrease any further.

Thus, the number of iterations should be kept such as to

avoid extra computations. Thus, upper bounds need to be
specified for the number of iterations. We believe that the

guideline for puncturing vector achieved in this simulation

work will be useful for further research in field of turbo

coding.

REFERENCE
[1] C. Berrou, A. Glavieux, P. Thitimajshima, "Near Shannon limit

error correcting coding and decoding: Turbo-codes", Proc.ICC'93,

Geneva,Switzerland, May 1993, pp. 1064- 1070.

[2] C. Berrou, A. Glavieux, "Near Optimum Error Correcting Coding

and Decoding: Turbo-Codes", IEEE Transactions on

Communications, Vol. 44, No. 10, October 1996.

[3] C. E. Shannon, “A Mathematical theory of Communication,” Bell

System Technical Journal 27 (July, Oct 1948): 379-423, 623-56.

[4] J.Hagenauer, E. Offer, L. Papke, “Iterative Decoding of Binary

Block and Convolutional Codes”, IEEE Trans. Inform.Theory, vol.

42, no. 2, pp. 429-445, March 1996.

[5] J.Hagenauer, “Rate compatible punctured convolutional codes and

their applications,”IEEE Trans. Commun., vol. 36, no. 4, pp. 389–

400, Apr.1988.

[6] D. Haccoun and G. B´ egin, “High-rate punctured convolutional

codes for Viterbi and sequential decoding,” IEEE Trans. Commun.,

vol. 37, no. 11, pp. 1113–1125, Nov. 1989.

[7] Y. Kim, J. Cho, W. Oh and K. Cheun, “Improving the performance

of turbo codes by repetition and puncturing,” Project Report,

Division of Electrical and Computer Engineering, Pohang

University of Science and Technology.

[8] D. Divsalar, S. Dolinar, and F. Pollara, “Transfer Function Bounds

on the Performance of Turbo Codes,” TDA Progress Report 42-

122, Aug. 1995, Communications Systems and Research Section,

R. J. McEliece California Institute of Technology, pp. 44-55.

[9] Narushan Pillay and HongJun Xu, “ Dual-Repeated- Punctured

Turbo Codes on AWGN channels” in IEEE AFRICON 2009.

[10] BERROU, C., and GLAVIEUX, A,: „Near optimum-error

correcting coding and decoding: turbo-codes‟, IEEE Trms.

Cornrnun., 1996, 44,pp. 1261-1271

BIOGRAPHY

Jitendra Prakash Shreemukh is M.

Tech (Communication Engineering)

student at Madan Mohan Malaviya

University of Technology, Gorakhpur,

India. He did his B. Tech (ECE) from

IIMT college of Engineering, Greater

noida, UP. He has published 4 papers in

International/National Conference/ Journals. He has
received third best paper award in National Conference.

His research interests include wireless communication and

Coding Theory.

Dr. B. S. Rai. is a professor in

department of electronics and

communication engineering at Madan

Mohan Malaviya University of

Technology, Gorakhpur, India. He holds

a B. Tech and M. Tech from University of Allahabad,

Allahabad and Ph. D from D.D.U. University, Gorakhpur.

He has teaching experience of about 36 years. He has

published about 50 papers in International/National

Journals/ Conference. He is currently a member of IEEE,

IE, IETE, ISTE. His research interest includes Signal

processing, Embedded System, Coding Techniques and

Communication System.

