
ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7689

A Tool To Automate The Test Cases Of Software

Using Gray Box Testing Approach

Sahida Sultana
1
, Mohd Sadiq

2
, Waseem Ahmad

3

M.Tech. Scholar, Department of Computer Science and Engineering, Faculty of Engineering and Technology,

AL-Falah University, Dhuj, Faridabad, Haryana, India1

Computer Engineering Section, University Polytechnic, Faculty of Engineering and Technology, Jamia Millia Islamia

(A Central University), New Delhi, India2

Department of Computer Science and Engineering, Faculty of Engineering and Technology, AL-Falah University,

Dhuj, Faridabad, Haryana, India3

Abstract: The success rate of software system depends upon the following: requirements elicitation technique,

modeling, analysis, verification, validation &testing. In literature, we have identified different types of Software

Testing Techniques like, black box techniques, white box techniques, and gray box techniques; and choosing gray box

testing is not an easy task according to need/criteria of the software projects. In our paper, we have described and

compared the three most prevalent and commonly used software testing techniques and selection of gray box approach

for detecting errors, which are the combination of: white box testing, black box testing.

Keywords: Requirement Prioritization, Black Box, Grey Box, White Box.

I. INTRODUCTION

Software testing identifies defect, flows or errors in the

software. In literature, we have identified various

definitions of software testing. Few of them are given

below: (i) testing is the process of demonstrating that

errors are not present (ii) The purpose of testing is to show

that a program performs its intended functions correctly.

The three most important techniques that are used for

finding errors are functional testing, structural testing and

gray box testing [6,7]. Functional testing is also referred to

as black box testing in which contents of the black box are
not known. Functionality of the black box is understood

on the basis of the inputs and outputs in software. There

are different methods which are used in black box testing

methods like boundary value analysis, robustness testing,

equivalence class partitioning, and decision table testing.

White box testing or structural testing is the

complementary approach of functional testing or black

box testing. White box testing permits us to examine the

internal structure of the program. In functional testing all

specifications are checked against the implementation.

This type of testing includes path testing, data flow testing,

and mutation testing. In white box testing there are various

applications of graph theory which is used to identify the
independent path in a program or software like decision to

decision (DD) flow graph, Cyclomatic complexity [6] etc.

Gray box testing is the testing of software application

using effective combination of white box testing, black

box testing, mutation, and regression testing [2]. This

testing provides a method of testing software that will be

both easy to implement and understand using commercial

of the shelf (COTS) software [1]. In the Gray box testing,

tester is usually has knowledge of limited access of code

and based on this knowledge the test cases are designed;
and the software application under test treat as a black box

& tester test the application from outside. Gray box

software testing methodology is a ten steps process for

testing computer software. The methodology starts by

identifying all the inputs and output requirements to

computers systems. This information is captured in the

software requirements documentation. The steps are given

as follows: (i) Identify inputs (ii) Identify outputs (iii)

Identify major paths (iv) Identify sub-function (SF) X (v)

Develop inputs for SF X (vi) Develop outputs for SF X

(vii) Execute test cases for SF X (viii) Verify correct
results for SF X (ix) Repeat steps from 4 to 8 for other SF

X and (x) Repeat steps 7 to 8 for regression [1].

II. LITERATURE REVIEW

 Most of the work in literature is based on either black

box testing or white box testing for example, in 2012;

Khan, Bhatia, and Sadiq [8] develop a BBTool to generate

the tests cases using black box testing. In a similar study,

in 2011, Khan and Sadiq [7] analyze the various black box

testing techniques. In literature, authors are trying to

integrate the concepts of genetic algorithms with testing,

for example, In 2011 Sabharwal et al. [9] proposed a

technique for optimizing static testing efficiency by

identifying the critical path clusters using genetic

algorithm. The testing efficiency is optimized by applying

the genetic algorithm on the test data. The test case

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7690

scenarios are derived from the source code. The

information flow metric is adopted in this work for

calculating the information flow complexity associated
with each node of the control flow graph generated from

the source code. In 2009, Mohapatra et al. [5] used genetic

algorithm to optimize the test cases that are generated

using the category-partition and test harness patterns. In a

similar study, Vieira et al. [11] proposed a GUI Testing

Using a Model-driven Approach. The authors
demonstrated and evaluated their method based on use

cases that was developed for testing a graphical user

interface (GUI).

 Huang et al. [3] proposed repairing GUI test suites

using a genetic algorithm. In this paper they develop a

method to automatically repair GUI test suites, generating

new test cases that are feasible. They use a genetic

algorithm to evolve new test cases that increase our test

suite’s coverage while avoiding infeasible sequences. In
2007, Memon et al. [4] proposed an event flow model of

GUI-based applications for testing. This paper

consolidates all of the models into one scalable event-flow

model and outlines algorithms to semi-automatically

reverse-engineer the model from an implementation.

Earlier work on model-based test-case generation, test-

oracle creation, coverage evaluation, and regression

testing is recast in terms of this model by defining event-

space exploration strategies (ESESs) and creating an end-
to-end GUI testing process. Three such ESESs are

described: for checking the event-flow model, test-case

generation, and test- oracle creation.

III. TESTING TECHNIQUES

 Software testing identifies defects, flaws or errors in

the application code that must be fixed. We can also define

software testing as a process of accessing the functionality

and correctness of a software through analysis. The main

purpose of testing can be quality assurance, reliability

estimation, validation and verification. Software testing is
a fundamental component of software quality assurance

and represents a review of specification, design and

coding. The main objective of software testing is to affirm

the quality of software system by systematically testing

the software in carefully controlled circumstances, another

objective is to identify the completeness and correctness of

the software, and finally it uncovers undiscovered errors.
[1] [2]

 The three most important techniques that are used for

finding errors are: [1]

 1) White Box Testing Technique: It is the detailed

investigation of internal logic and structure of the code. In

white box testing it is necessary for a tester to have full

knowledge of source code.

 2) Black Box Testing Technique: It is a technique of

testing without having any knowledge of the internal

working of the application. It only examines the

fundamental aspects of the system and has no or little

relevance with the internal logical structure of the system.

 3) Grey Box Testing Technique: White box + Black

box = Grey box, it is a technique to test the application
with limited knowledge of the internal working of an

application and also has the knowledge of fundamental

aspects of the system.

 1. WHITE BOX TESTING TECHNIQUE

 Figure 1. Represent white box testing

 White box testing is a test case design method that uses

the control structure of the procedural design to derive test

cases. White box testing can uncover implementation

errors such as poor key management by analyzing internal

workings and structure of a piece of software. White box

testing is applicable at integration, unit and system levels

of the software testing process. In white box testing the

tester needs to have a look inside the source code and find

out which unit of code is behaving inappropriately. [3]
Some of the advantages and disadvantages of white box

testing technique are listed below: [3] [4]

 Advantages

 It reveals error in hidden code by removing extra

lines of code.

 Side effects are beneficial.

 Maximum coverage is attained during test

scenario writing. Disadvantages

 It is very expensive as it requires a skilled tester

to perform it.

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7691

 Many paths will remain untested as it is very

difficult to look into every nook and corner to fin out

hidden errors.

 Some of the codes omitted in the code could be

missed out. Some of the synonyms of white box testing are

glass box testing, clear box testing, open box testing,

transparent box testing, structural testing, logic driven

testing and design based testing. Some important types of
white box testing techniques are briefly described below:

[2]

 Figure 2. Represent different forms of white box testing techniques

1) Control Flow Testing: It is a structural testing strategy

that uses the program control flow as a model control flow
and favours more but simpler paths over fewer but

complicated path.

 2) Branch Testing: Branch testing has the objective to test

every option (true or false) on every control statement

which also includes compound decision.

3) Basis Path Testing: Basis path testing allows the test

case designer to produce a logical complexity measure of

procedural design and then uses this measure as an

approach for outlining a basic set of execution paths.
4) Data Flow Testing: In this type of testing the control

flow graph is annoted with the information about how the

program variables are define and used.

5) Loop Testing: It exclusively focuses on the validity of

loop construct

.

 2. BLACK BOX TESTING TECHNIQUE

 Figure 3. Represent black box testing

Black box testing treats the software as a “Black Box” –

without any knowledge of internal working and it only

examines the fundamental aspects of the system. While

performing black box test, a tester must know the system

architecture and will not have access to the source code.

[5]

Some of the advantages and disadvantages of black box

testing technique are listed below: [4] [5]

Advantages

 Efficient for large code segment.

 Tester perception is very simple.

 Users perspective are clearly separated from

developers perspective (programmer and tester are

independent of each other).

 Quicker test case development.

Disadvantages

 Only a selected number of test scenarios are

actually performed. As a result, there is only limited

coverage.

 Without clear specification test cases are difficult

to design.

 Inefficient testing. Some of the synonyms of

black box testing technique are opaque testing, functional

testing, close box testing, and behavioural testing. Some

important types of black box testing techniques are briefly

described below: [5]

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7692

 Figure 4. Represent differnet forms of black box testing techniques

1) Equivalence Partitioning: It can reduce the number of

test cases, as it divides the input data of a software unit

into partition of data from which test cases can be

derived.

2) Boundary Value Analysis: It focuses more on testing at

boundaries, or where the extreme boundary values are

chosen. It includes minimum, maximum, just

inside/outside boundaries, error values and typical values.

 3) Fuzzing: Fuzz testing is used for finding

implementation bugs, using malformed/semi-malformed

data injection in an automated or semi-automated session.

4) Cause-Effect Graph: It is a testing technique, in which
testing begins by creating a graph and establishing the

relation between the effect and its causes. Identity,

negation, logic OR and logic AND are the four basic

symbols which expresses the interdependency between

cause and effect.

 5) Orthogonal Array Testing: OAT can be applied to

problems in which the input domain is relatively small, but

too large to accommodate exhaustive testing.

6) All Pair Testing: In all pair testing technique, test cases

are designs to execute all possible discrete combinations

of each pair of input parameters. Its main objective is to

have a set of test cases that covers all the pairs.
7) State Transition Testing: This type of testing is useful

for

testing state machine and also for navigation of graphical

user interface.

3. GREY BOX TESTING TECHNIQUE

Grey box testing technique will increase the testing

coverage by allowing us to focus on all the layers of any

complex system through the combination of all existing

white box and black box testing.

 Figure 5. Represent grey box testing

In grey box testing the tester must have knowledge of

internal data structures and algorithm, for the purpose of

designing test cases. Examples of grey box testing

technique are: [6]

 Architectural Model

 Unified Modeling language (UML)

 State Model (Finite State Machine)

In grey box testing the codes of two modules are studied

(white box testing method) for the design of test cases and

actual test are performed in the interfaces exposed (black

box testing method).

 Some of the advantages of grey box testing technique

are listed below: [4] [6]

 Grey box testing provides combined benefits of

white box and black box testing techniques.

 In grey box testing, the tester relies on interface

definition and functional specification rather than source

code.

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7693

 In grey box testing, the tester can design excellent

test scenarios.

 The test is done from the user’s point of view
rather than designer’s point of view.

 Create an intelligent test authoring.

 Unbiased testing.

 Some of the disadvantages of grey box testing

technique are listed below:

 Test coverage is limited as the access to source

code is not available.

 It is difficult to associate defect identification in

distributed applications.

 Many program paths remain untested.

 If the software designer has already run a test

case, the tests can be redundant. The other name of grey

box testing is translucent testing. Different forms of grey

box testing techniques are briefly described below: [6]

 Figure 6. Represent different forms of grey box testing techniques

1) Orthogonal Array Testing: This type of testing use as

subset of all possible combinations.

2) Matrix Testing: In matrix testing the status report of the

project is stated.

3) Regression Testing: If new changes are made in

software, regression testing implies running of test cases.

4) Pattern Testing: Pattern testing verifies the good

application for its architecture and design.

IV. ANALYTIC HIERARCHY PROCESS

 In 1972, T. L. Saaty proposed the analytic hierarchy

process [28]. It is a multi-criteria decision (MCDM)

making method. AHP helps decision maker facing a

complex problem with multiple conflicting and subjective
criteria [1, 28]. This process permits the hierarchical

structure of the criteria or sub-criteria when allocating a

weight. AHP has been widely used in various fields like

banks, manufacturing systems, software evaluation,

requirements prioritization [17, 18, 19], evaluation of web

site performance etc. AHP involvesfollowing steps: (a)

problem definition (b) pair-wise comparisons (c) compute

the eigenvector of the relative importance of the criteria

(d) check consistency. Once we have identified the criteria

or sub-criteria according to the need of the problem or

problem definition, then the next step is to express the

decision makers opinion on only two alternatives than

simultaneously on all the alternatives. On the basis of the
pair wise comparison with all the alternatives, we

construct the pair-wise comparison matrix on the basis

of the following rating scale (Judgment scale).

 Table: 1 the Saaty rating scale

 There are several methods or algorithm for the

calculation of eigenvector. In this paper, we adopt the

following algorithm:

Algorithm:

Step 1: Multiplying together the entries in each row of the

matrix and then take the nth root of the product.

Step 2: Compute the sum of nth root and store the result in

SUM.

Step 3: The value of SUM would be used to normalize the

product values and the resultant would be the eigenvector

Intensity of

importance

Definition

1 Equal importance

3 Somewhat more importance

5 Much more important

7 Very much important

9 Absolutely more important

2,4,6,8 Intermediates values (when

compromise is needed)

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7694

 Saaty argues that a Consistency Ratio (CR) >0.1

indicates that the judgment are at the limit of consistency,

where as CR=0.9 would mean that the pair wise judgment

are random and are completely untrustworthy [1, 28]

V. PROPOSED METHOD

This section presents a method for the selection of

Software Testing Techniques using AHP. The proposed

presented simply in the following method is:

 (i) Identify the criteria

(ii) Construct the hierarchical structure of Software

Testing Techniques

(iii) Construct the decision matrix

(iv) Calculate the ranking values

 (v)) Selection of a Software Testing Techniques

(i) Identify the criteria

 Before the selection of any Software Testing

Techniques, tester should identify the criteria’s the

selection of an Software Testing Techniques. On the

basis of our literature review, we have identified the

following factors which influence the decision of

choosing a software testing methodology:

 (a) New or existing software

 (b) Cost of requirements

 (c)Test cases Identify

 (d) Independent path

ii) Construct the hierarchical structure of

Software Testing Techniques

 As the Software Testing Techniques selection decision

requires a systematic approach to help integrate different

attributes or criteria into software project testing.

Therefore, it is essential to break down the problem into

more manageable sub-problems. As illustrated in Fig.1,

the problem studied here has three level of hierarchy. The

first level, i.e., the overall objective, is the selection of an
Software Testing Techniques. Level two contains three

different Software Testing Techniques, and at level three

decision criteria is given.

Fig.1 Hierarchical Structure of the Software Testing Techniques selection problem

B Black Box W White Box G Gray Box

N New s/w or

Existing s/w

T Test Cases Identify Iii Independent

Path

 Cost for

Requirements

Le Level1

L Level2

L Level3

Jh Selection of Software Testing

Techniques

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 8, August 2014

Copyright to IJARCCE www.ijarcce.com 7695

VI. CONCLUSION

 This paper presents a method for the selection of

Software Testing Techniques using AHP. Proposed

method is a four step process, namely, (i) identify the

criteria, (ii) construct the hierarchical structure of Software

Testing Techniques, (iii) construct the decision matrix, and

(iv) the selection of a technique. Proposed method selects

the agile methods for the testing of the project. On the
basis of our analysis, we identify that there is a need to

improve the agile methods by intertwining of decision

making approaches for the selection and prioritization of

requirements. Future research agenda includes the

following:

1. To improve the analysis phase of adaptive

process model for agile development by applying TOPSIS

method.

2. To propose a fuzzy decision making approach or

the selection of Software Testing Techniques.

3. To propose a hybrid approach of Software

Testing Techniques.
4. To propose a method for the selection of

Software Testing Techniques using hybrid techniques like

fuzzy AHP and fuzzy ANP.

REFERENCES

1. Coulter A, “Gray Box Software Testing Methodology”, White

paper, Version 0.8.

2. Coulter Andre, “Gray box Software testing Methodology-

Embedded software testing technique”, 18
th
 IEEE Digital Avionics

Systems Conference Proceedings, pp. 10.A.5-2, 1999.

3. Huang et al, “Repairing GUI test Suites using Genetic

Algorithms”.

4. Memon A, “An Event Flow Model of GUI based Applications

for Testing”, Software Testing Verification, and Reliability, Wiley Inter

Science, pp. 137-157, 2007.

5. Mohapatra, Bhuyan, and Mohapatra, “Automated Test Cases

Generation and Its Optimization using Genetic Algorithm and

Sampling”, IEEE International Conference on Information Engineering,

2009.

6. Mohd. Sadiq, “Application of Graph Theory to Software

Engineering”, South East Asian Journal of Mathematics and

Mathematical Sciences, India, Vol.3, No.3, pp 53-57, 2005.

7. Mumtaz Ahmad Khan and Mohd. Sadiq, “Analysis of Black

Box Software Testing Techniques: A Case Study”, IEEE International

Conference and Workshop on Current Trends in Information

Technology, pp.1-5, December, 2011, Dubai, UAE.

8. Mumtaz Ahmad Khan, Preeti Bhatia, and Mohd. Sadiq,

“BBTool: A Tool to Generate the Test Cases”, International Journal of

Recent Technology and Engineering, Vol. 1, Issue 2, pp. 192- 197, June

2012.

9. Sabharwal, Sibal, and Sharma, “A Genetic Algorithm based

Approach for Prioritization of Test Cases Scenarios in Static Testing”,

IEEE International Conference of Communication and Technology,

2011.

10. Sharma, Sabharwal, and Sibal, “ A Survey on Software

Testing Techniques using Genetic Algorithms”, IJCSI International

Journal of Computer Science Issues, Vol. 10, Issue 1, No.1, 2013.

11. Viera et al., “Automation of GUI testing Using Model –

Driven Approach”, ACM- AST, China, 2006.

