
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4578

Adhoc On-Demand Distance Vector Protocol For

Energy Efficiency

Abhilash C S
1
, Abhishek Varshney

2
, Dilip S

3
 , Navik Yogesh Laljibhai

4
 , Pradyot H Adavi

5

 M.Tech student, Department of Networking and Communication, I.I.I.T.B., Bangalore, India
 1,3,5

M.Tech student, Department of Computer Science, I.I.I.T.B., Bangalore, India
 2

M.Tech student, Department of Embedded Systems, I.I.I.T.B., Bangalore, India
 4

Abstract: The use of computer networks is drastically growing and the need for enhancing the existing network protocols

and enforcing communication security thus is increasing. Tools like network simulators are used by researchers in order to

test new scenarios and protocols in a controlled and reproducible environment. They allow the user to represent various

topologies, simulate network traffic using different protocols, visualize the network and measure the performances.

Although they are very useful, most of the widely used network simulators do not scale. Trying to simulate medium to large

networks will result in a long simulation time unsuitable for investigating protocols. Some of the current network

simulators implement various methods for accelerating the simulations by means of using parallel computation or changing

the data representation of the nodes. However, most of the optimization techniques require additional hardware resources as

a computational grid or cluster and deep knowledge of the structure of the simulator. A wide assortment of network

simulators are available and most of them share the same issues when it comes to computation time and scalability.

Simulating a network of 100 nodes on a normal CPU using standard simulator takes a long time. In this project we try to

alleviate these problems by building a simulator on a Graphical Processing Unit [GPU] based on parallel execution on

using the CUDA programming model developed by nVIDIA.

Keywords: AODV, NS2, GPU, CUDA, Energy, Runtime

I. INTRODUCTION

A Wireless sensor network consisting of mobile nodes

must be energy efficient in order to be useful in areas where

power is scarce. Power failure of a mobile node affects

overall network efficiency to forward packets. Most of the

energy gets consumed when an event generated at any node

tries to reach a base station using a protocol. Simulate a

network of about 100 nodes and measure energy

consumption on the average for a random event to reach the

base station under a given protocol. Any standard protocol

such as DSR or AODV may be used for implementation.

In this project we focus the possibilities for parallel

implementations of wireless sensor network of 100 mobile

nodes using AODV protocol [1]. Specifically we investigate

and implemented its simulation on GPU in order to utilize

its resources and obtain faster simulations. We propose a

possible architecture for achieving this goal.

This paper is organized as the follows: Section II

provides a brief survey on similar systems; Section III

proposes the project architecture; Section IV describes the

implementation; Section V shows the observation and results

of the experiment; Section VI concludes this paper.

II. BRIEF SURVEY ON SIMILAR SYSTEMS

There are two types of approaches for developing a

parallel network simulator. One can create the parallel

simulator from scratch, where all the simulation software is

custom designed for a particular parallel simulation engine.

For this approach a significant amount of time and effort are

necessary to create a usable system. This is so, because new

models must be developed, and therefore validated for

accuracy. The second approach for developing

parallel/distributed simulation involves interconnecting with

existing simulators. These federated simulations may include

multiple copies of the same simulator (modeling different

portions of the network), or entirely different simulators.

Few parallel implementations of this approach are presented

in the following:

A. Global Mobile Information System Simulator

(GloMoSim): It is a scalable simulation library designed at

UCLA Computing Laboratory to support studies of large-

scale network models, using parallel and/or distributed

execution on a diverse set of parallel computers [2].

GloMoSim beside sequential adopts parallel simulation

model using libraries and layered API. The libraries are

developed using Parsec [3], which is a parallel C based

programming language which uses message based approach.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4579

B. Scalable Simulation Framework (SSFNet): It claims that

is a standard for parallel discrete event network simulation

[3, 4]. SSFNET‟s commercial Java implementation is

becoming popular in the research community, but SSFNet

for C++ (DaSSF) does not seem to receive nearly as much

attention, probably due to the lack of network protocol

models. It is a high performance network simulator designed

to transparently utilize parallel processor resources, and

therefore scales to a very large collection of simulated

entities and problem sizes.

C. Georgia Tech Network Simulator (GTNetS): It is a

network simulation environment which uses C++ as a

programming language [5]. GTNetS is designed for studying

the behavior of moderate to large scale networks. The

simulation environment is structured as an actual network

with distinct separation of protocol stack layers.

D. OMNeT++: It is a network simulation library and

framework, primary used for simulation of communication

networks, but because of its flexible architecture can be used

to simulate complex IT systems too. OMNeT++ offers an

Eclipse based IDE and the programming language used is

C++ [6, 7].

In our approach we have developed an application

which runs AODV protocol on GPU. Our application takes

much lesser time for many events triggering at the same time

at the network of mobile nodes when compared with any

application running on CPU. As events triggering at the

same time are served in parallel using GPU in our

application while on CPU it is being served sequentially.

III. PROJECT ARCHITECTURE : AODV PROTOCOL ON GPU

In our architecture each node performs its operations

independently without getting affected by operations of any

other node in the network. Every node in the network is

mapped to a single thread working independently from other

threads in GPU. We have implemented Single Instruction

Multiple Data (SIMD) concept to achieve parallelism [8].

Fig.1- Project architecture

In the above Fig 1., the main application creates an

array of structures on the global memory where each

element of the structure defines the properties of the node.

The number of threads created is equal to the number of

nodes specified in the network. Every element of the

structure array is mapped to its corresponding thread. Every

thread can access any of the structure elements to perform its

operation. Every node i.e. a thread executes the following set

of functions:

• Sending Hello Packets.

• Serving its Events-Queue for communication.

• Serving its Request-Queue.

• Refreshing its

– Neighbor‟s list.

– Routing table.

– Broadcast-id table.

IV. IMPLEMENTATION

System setup for the project was done on an Ubuntu

11.04 system containing an NVIDIA GeForce GTX 480

graphics card.

1. CUDA development environment was set up on the host

OS with the following software versions installed:

• CUDA Toolkit for Ubuntu Linux 10.10.

• Developer Drivers for Linux version 270.41.19

2. NS-2.35 was compiled and installed from its source codes

using NVCC compiler.

3. Eclipse SDK 3.5.2 using Java JDK 1.6 for ubuntu 64-bit.

A. MANET with AODV protocol on CPU

Lowering energy consumption is a key goal in

many multi-hop wireless networking environments,

especially when the individual nodes of the network are

battery powered. This requirement has become increasingly

important for new generations of mobile computing devices

(such as PDAs, laptops, and cellular phones) because the

energy density achievable in batteries has grown only at a

linear rate, while processing power and storage capacity

have both grown exponentially [9]. As a consequence of

these technological trends, many wireless-enabled devices

are now primarily energy-constrained; while they possess

the ability to run many sophisticated multimedia networked

applications, their operational lifetime between recharges is

often very small (sometimes less than 1 hr). In addition, the

energy consumed in communication by the radio interfaces

is often higher than, or at least comparable to, the

computational energy consumed by the processor. Various

energy-aware routing protocols have thus been proposed to

lower the communication energy overhead in such multi-hop

wireless networks. In contrast to conventional wired routing

protocols that try to utilize the minimum-hop route (one that

minimizes the number of unique links), these protocols

typically aim to utilize the most energy-efficient route [9].

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4580

These protocols exploit the fact that the transmission power

needed on a wireless link is a nonlinear function of the link

distance, and assume that the individual nodes can adapt

their transmission power levels. As a consequence of this, it

turns out that choosing a route with a large number of short-

distance hops often turns out to consume significantly less

energy than an alternative one with a few long-distance

hops. For wireless links, a signal transmitted with power Pt

over a link with distance D is attenuated and is received with

power [9].

Pr = C * K(D) >= 2

Where C is a constant, K(D) depends on the

propagation medium, antenna characteristics, and channel

parameters, such as the radio frequency. Since most wireless

receivers are able to correctly decode the received signal as

long as its power is above a certain fixed threshold, energy-

efficient algorithms typically set the transmission power to

be proportional to DKðDÞ. If the link cost in a routing

algorithm is then assigned proportional to this transmission

power, a minimum-cost path will then correspond to a route

that consumes the lowest cumulative energy for a single-

packet transmission. To prove the above mentioned concept

i.e. choosing a route with a large number of short-distance

hops often turns out to consume significantly less energy

than an alternative one with a few long-distance hops [9].

B. AODV Protocol for GPU

To simulate the actual network scenario we prepared

various models as follows:

1. Power and coverage radius modeling:

We have used two-ray ground model to define the

coverage radius for the nodes.

• Parameters that has been fixed

– Transmission power (Pt): 165E-3 W

– Transmitter Gain (Gt): 1

– Receiver Gain (Gr): 1

– Transmitter antenna height (ht): 1.5 m

– Receiver antenna height (hr): 1.5 m

– Wavelength (l): 0.328 m

– Transmission frequency: 914 MHz

– Transmission speed: 1 Mbps

– Threshold reception power (Prt): 6.3E-9 W

• Based on these parameters we calculate the coverage radius

for the node from the following equation [10]

D = [(Pt * Gr * Gt * l2) / (4 * pi)*2 *Prt)]
 -2

* It turns out to be 133.58m

2. Delay modeling:

Overall delay for a packet to reach from one node

to another consists of transmission delay at the node and the

propagation delay in the medium [10].

•Transmissiondelay=(packetsizeinbits)/(transmissionspeed)

*It turns out to be 0.000576sec

•Propagationdelay=(maxdistancebetweentwonodes)/(wavep

ropagationspeed)
* It turns out to be 0.0000006679sec

• Overalldelay = Transmissiondelay + Propagationdelay.

*It turns out to be 0.0005766679

3. Energy modeling:

During transmission and reception of the packet, a

node consumes finite amount of energy. The energy

modeling is done in the following manner [10].

• Parameters fixed for energy modeling

– Transmission or receive energy per bit for a node Ebit:

50nJ

– Average control packet size: 72 bytes.

– Initial Energy of node: 1000 J

• TransmissionEnergyperpacketEt : 72 * 8 * (50nJ).

4. Finding neighbors:

• Each node finds its coverage radius (D) based on the above

equation and decides it neighbor.

• At every HELLO_INTERVAL (1000ms) nodes update

their neighbor list.

V. OBSERVATION AND RESULTS

A. Remaining energy in MANET using AODV protocol

on CPU.
Figure below shows the simulation for a network of 100

mobile nodes. The event shown is a scenario where a source

- node 0 and destination (sink) - node 1 are communicating

using AODV protocol.

Fig.2 - Node communication in NS2

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4581

The simulation has been done on NS2 and the

graph is as shown in the Fig 2. The graph plotted is Number

of intermediate nodes between source and sink on the x-axis

and the Remaining energy of the node in the y-axis. It is

observed that as the number of intermediate nodes increases

between source and sink, the Energy remaining of the node

increases following the equation [9],

E = 7.578ln(n) + 21.17.—— equation.1

Where, E = Energy Remaining of the node after

transmission in Joule. n = Number of intermediate nodes

between source and sink. The transmitter and all the other

nodes can be adjusted.

Fig.3 - Average energy remaining in the source node[J]

Conclusion from the Fig 3. is that, consider a

scenario wherein the transmitter(T) sends signal with

transmission power „Pt‟ to a Receiver(R) at the distance of

„D‟ m, if there were no intermediate nodes between T and R

then the T should transmit with its full power Pt so that the

signal reaches R. When an intermediate node (N1) is placed

between T and R. T should transmit with Pt/2 power to N1

and then N1 transmits the signal to R with Pt/2 power. Thus

the Average power/Energy of the T node is reduced. The

same explanation holds when the Number of intermediate

nodes is increased. It follows a particular curve given by

equation 1 [9].

 Another Graph was plotted between Number of

events on the x-axis and Energy Remaining of the node on

the y-axis as in Fig 4. It is observed that the Energy of the

node decreases as the number of events increases in the

network. Conclusion from the above graph Consider a

scenario wherein there is only event in the network (say TCP

connection), then the Remaining energy of the node is say

„Er‟. When the number of events is increased the „Er‟ is

decreased as each event consumes power [9].

Fig.4 - Energy remaining at the node[J]

B. AODV Protocol on GPU –

Fig. 5. Runtime on GPU

The Fig 5. shows the Statistical Analysis of Simulation

of AODV protocol running on GPU for 20 seconds for

multiple events. And the graph shows the independence of

the simulation time taken with respect to the number of

events.

From the above graph we can conclude that there is

not much deviation in the simulation time as we increase the

number of events. This is mainly because all the events are

served in parallel and all the threads representing the nodes

in the network are running in parallel and independent of

each other.

We would also like to mention that a one-to-one

comparison with NS2 running on CPU/GPU cannot be made

because NS2 makes use of all the higher layer protocols

which are absent in our simulator running on GPU. Hence

the time taken would not be will not be accurate although

they would provide an approximate estimate.

VI. CONCLUSION

We have successfully developed a Simulator which runs

AODV protocol on GPU. The proposed simulator takes very

less time for simulating a network of mobile nodes with

many events triggering at the same time as compared to

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4582

simulating on CPU. Each of the multiple events triggered at

the same time are assigned a thread and run in parallel in

GPU as opposed to CPU where the multiple events

occurring at the same time are served sequentially.

From our experiment it is evident that there is a

significant reduction in time it takes to perform simulation of

100 nodes. Hence other networking protocols can be

implemented on GPU and a robust simulator like NS2 can

be built. Also the input for defining the topology of the

network can done using the TCL language and then hook up

this with the CUDA files where the logic of the protocols are

present. On the similar lines, Standard network protocols

such as NS2 can be made to work on GPU for Scalability

and Robustness.

ACKNOWLEDGMENT

We are extremely grateful to those who have helped and

supported us during the project. Our deepest thanks to our

advisors Prof. Shrisha Rao and Prof Poonacha P G. for their

continuous encouragement and suggestions throughout the

course of this work. It was our pleasure to work under their

guidance regarding project by explaining many scenarios

where the project can be used.

REFERENCES

[1] Perkins, C.; Belding- Royer, E.; Das, S. (July 2003) “Adhoc On-

Demand Distance Vector (AODV) Routing”.[RFC 3561]

[2] Zeng, X., Bagrodia, R., Gerla, M., “GloMoSim: A Library forParallel

Simulation of Large-Scale Wireless Networks”, in Proc.12th Workshop on

Parallel and Distributed Simulation, Banff, Alta.Canada, 1998, p. 154-161.
[3] Parallel Simulation Environment for Complex Systems (PARSEC),

retrieved June 2010 from http://pcl.cs.ucla.edu/projects/parsec/.

[4] Cowie, J.H., Nicol D.M., and Ogielski A.T., “Modeling the
GlobalInternet”, Computing in Science and Engineering, 1999.

[5] Riley, G.F., “The Georgia Tech Network Simulator”, in Proc. of the

Workshop on Models, Methods, and Tools for Reproducible Network
Research (MoMe Tools), 2003.

[6] Varga, A., “The OMNeT++ discrete event simulation system”, Proc. of

the European Simulation Multiconference (ESM ‟2001), Prague, Czech
Republic, 2001.

[7] Sekercioglu, Y. A., Varga, A., Egan, G. K., “Parallel Simulation Made

Easy With Omnet++”, in Proc. of the European Simulation Symposium
(ESS2003), Oct. 2003, Delft, The Netherlands.

[8] Buck, Ian, “GPU Computing: Programming a Massively Parallel

Processor” in Code Generation and Optimization, 2007. CGO ‟07.

International Symposium, 11-14 March 2007.

[9] S. Banerjee and A. Misra, "Minimum energy paths for reliable

communication in multihop wireless networks", Proc Mobihoc Conf , June
2002.

[10] Wendi Beth Heinzelman,"Application-Specific Protocol Architectures

for Wireless Networks",in his thesis document in Massachusetts Institute of
Technology,June 2000

