
ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7950`

Verilog Implementation of Floating Point FFT

With Reduced Addressing Logic

D. Venkatesh Babu
1
, K. Naresh Kumar

2

M.Tech, Embedded Systems, VLSI Design, G.V.P.C.O.E, Visakhapatnam, Andhra Pradesh, India1

Assistant Professor, ECE Dept, G .V.P.C.O.E, Visakhapatnam, Andhra Pradesh, India2

Abstract: The Discrete Fourier Transform (DFT) can be implemented very fast using Fast Fourier Transform (FFT). It

is one of the finest operations in the area of digital signal and image processing. FFT is a luxurious operation in terms

of MAC. To achieve FFT calculation with a many points and with maximum number of samples the MACs

requirement could not be matched by efficient hardware’s like DSP. So a fine solution is to use dedicated hardware

processor to perform efficient FFT working out at high sample rate, while the DSP could perform the less concentrated

parts of the processing. Verilog implementation of floating point FFT with reduced generation logic is the proposed
architecture, where the two inputs and two outputs of any butterfly can be exchanged hence all data and addresses in

FFT dispensation can be reordered.

Keywords: FFT, MAC, butterfly exchanging circuit, FPGA, DSP’s.

I. INTRODUCTION

There are different ways to compute the Discrete Fourier

Transform (DFT), firstly by solving in simultaneous linear

equations or the correlation method. Secondly by using

The Fast Fourier Transform (FFT). Where it gives the

same result as the other approach, it is extremely more
efficient, in reducing the computation time by hundreds.

Without FFT, the other techniques which are described

would not be practical. The FFT requires only a few lines

of code; it is one of the mainly intricate methods in DSP.

J.W. Cooley and J.W. Tukey are given recognition for

introducing the FFT to the humankind in their paper: "An

algorithm for the machine calculation of complex Fourier

Series," Mathematics Computation, Vol. 19, 1965, pp 297-

301. [1] The prescribed data are subjected to these

transforms i.e., using complex numbers or using real
numbers.

The name complex, it doesn’t mean that this illustration is

difficult or complicated, but that is a particular type of

mathematics is used [2]. Complex mathematics often is

complicated and intricate, but that isn't the name comes

from.

There are various communication standards for wired and

wireless communication, a separate FFT length and

minimum throughput requires each. FFT operation is

frequently implemented as a separate element to

congregate computational intensity constraint on a Digital

Signal Processor (DSP) [3]. A DSP explanation is

relatively simple to execute and usually exhibit high

throughput because of elevated clock frequency

comparable to FPGAs [4].

To accomplish the minimum throughput requirement of

the different standards which are of less power hungry

FPGA requires an extremely optimized design. An

additional room to this work would be to further improve

the proposed explanation to minimize power usage.

The below figure shown termed as simple butterfly

diagram because of its faction look. The basic part of the

FFT is butterfly.

Fig 1: Basic computation part in the FFT

Fig 2: Flow illustration of FFT

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7951`

Above Figure illustrates the arrangement of the complete

FFT. The time domain disintegration is obtained with a bit

reversal sorting algorithm.

Transforming the disintegrated data into the frequency

domain occupies nil and therefore it won’t come into sight

in the structure.

II. LITERATURE SURVEY

Ahmed Saeed, M. Elbably, G. Abdelfadeel, and M. I.

Eladawy proposed a method Efficient FPGA

implementation of FFT/IFFT Processor.Sneha N.kherde#1

Meghana Hasamnis#2 proposed a method Efficient

Design and Implementation of FFT.

Tharanidevi .B, Jayaprakash.r proposed a method

Implementation of double precision floating point radix-2

FFT using vhdl Mario Garrido, Member, IEEE, J. Grajal,

M. A. Sánchez, and Oscar Gustafsson, Senior Member,

IEEE proposed a method Pipelined Radix- Feed forward

FFT Architectures.

Xin Xiao proposed An Efficient FFT Engine with reduced

addressing Logic in this shared-memory-based method,

single radix-2 butterfly calculation unit are used in

embedded FFT processor since they necessitate least sum
of hardware source, and the ―in-place‖ addressing

stratagem is a practical requirement to reduce the total

memory required. We present the modified butterfly

architecture and the improved address generation logic,

which is primarily based on inverter, counter, and

multiplexors.

Although a shifter is still needed in this design, it shifts

only once for each pass instead of each clock. The goal of

this is to reduce both the address generation delay and the

hardware complexity.

 III. PRELIMINARIES
Here an N point signal (N=16) is divided through four

separate stages. The first stage split the 16 point signals

into exactly half i.e., each signal consists of 8 points. In

the next stage decays the divided 8 points into four signals

of 4 points. This pattern persists until N signals of a single

point observes.

An intersection is used every time to break a signal in to

two i.e., the signal is estranged into its even and odd
numbered samples.

Here the binary numbers are the differing of each other,

i.e. sample 3 (0011) is switch over with bit reversible

number 12 (1100). The FFT time domain disintegration is

usually passed out by a bit reversal arrangement algorithm.

The FFT function by rancid an N point time domain signal

into N time domain signals which are of single point. To

calculate the N frequency spectra equivalent to these N

time domain signals is the second step. Formation of a

single frequency spectrum from the N spectra is the final
step.

Fig 3: Signal flow graph of a FFT

Sample Numbers in Normal

Order

Decimal binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

Fig 4: The FFT Bit reversal Sorting

The IEEE Standard for Floating Point (IEEE 754), a

technical standard for floating point computation. The

benefit of floating-point representation more than fixed

point and integer representation is that, it can maintain a

much broad range of values. IEEE floating point numbers
have three basic components: the sign, the exponent, and

the mantissa. The mantissa is composed of the fraction and

an implicit leading digit. The exponent base (2) is implicit

and need not be stored

IV. PROPOSED METHOD

In the proposed thesis a fractional point radix2 FFT is

been generated using 32-bit Single precision IEEE 754

Arithmetic standard with reduced addressing logic is

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7952`

proposed. In the proposed work a 16point FFT is

considered and implemented in VERILOG HDL, and

synthesized in 40 nm technology of vertex 6. The
architecture of address generation circuit is shown below

in figure the Heart of the architecture is the BUTTERFLY,

The butterfly calculation is discussed below.

Fig 5: Address generation circuits for a 16-point FFT.

Table 1: Address generation table of the proposed method

for a 16-point FFT

a) BUTTERFLY CALCULATION

The proposed method is for calculation of 16 point

fractional FFT; the twiddle factor used in butterfly
calculation is given by N/2 where N is variable point FFT.

In the proposed method a 16 point FFT is considered, the

total number twiddle factors are 8, these 8 twiddle factors

are calculated and supplied as inputs to the system. In the

verilog design for butterfly calculation, IP CORE

GENERATION BLOCKS ADDER, MULTIPLIER, and

SUBTRACTOR. RAM’S are used. The inputs and outputs
are stored in two RAM’S through multiplexers, the input

to the butterfly is considered as a+jb, c+jd the twiddle

factor is considered as e+jf and the butterfly operation is

performed by adding the both inputs to obtain first output

and subtracting the inputs and multiplying with twiddle

factor to obtain second output.

Fig 6: Butterfly Flow chart

From the shown flowchart it clearly explains about

butterfly operation the main heart of the FFT. Firstly it

assumes the all input data and then operates to get output

data 1 and the other results stores in temporary files and

evaluates with the twiddle factor to get the final output to

store in the output 2.

After all the operation completed it checks and it goes to

the butterfly done. And again resets to the first stage. It

repeats up to 8 times of each stage and 32 times for 4

stages in the whole FFT likewise 32 times. Hence we can

come to know that FFT has done.

For floating calculation we will use floating adder, floating

Multiplier, and floating subtractor. Hence the floating

point FFT is possible in Verilog with a high clock

frequency up to 463MHz.

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7953`

V. RESULTS AND DISCUSSION

Fig 7: Simulation result shows the output data in

Hexadecimal form in RAM1 and RAM 2.

Device utilization summary:

Selected Device: 6vlx75tlff484-1l

Slice Logic Utilization:

 Number of Slice Registers: 2570 out of 93120 2%

 Number of Slice LUTs : 2305 out of 46560 4%

 Number used as Logic : 2172 out of 46560 4%

 Number used as Memory : 133 out of 16720 0%

 Number used as SRL : 133

Timing Summary:
 Speed Grade : -1

 Minimum period: 2.159ns (Maximum Frequency

 : 463.237MHz)

 Minimum input arrival time before clock

 : 1.051ns

 Maximum output required time after clock

 : 0.280ns

Table 2: Obtained result compared to existing method

Clock Frequency of

Existing structure

Clock Frequency

of Proposed

structure

280 MHz 463.6 MHz

The Proposed method is simulated and synthesized for test

input:

{1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}.

 The output thus acquired by performing FFT algorithm

manually, the obtained theoretical results are:

{24, (-1+5.023i), 0, (-1+1.4966i), 0, (-1+0.6682i), 0, (-

1+0.1989i), 0, (-1-0.1989i), 0,

(-1-0.6682i), 0, (-1-1.4966i), 0, (-1-5.0273i)}

In the above figures the outputs are displayed in 64bit
hexadecimal format where in that 64 bit, 32 bits represents

real part and the other 32bits represents imaginary part.

Wea- it denotes write enable bit it writes the data in to ram

after the every butterfly operation done it only sets for 3

bit after that it resets until the butterfly operation done.

FFT_start: here it sets when ever only the all data

received to do the butterfly operation unless it won’t sets,

when it sets it starts the butterfly operation.

Addra [2:0] - here address denotes the address of the data

where it stores in the RAM.

Dina [63:0] - here it denotes the 64 bit real and imaginary
input data.

Rst- resets after the fft done bit sets and again after this

whole loop starts.

State- hare state denotes where the present butterfly

operates i.e. from the address generation circuit it consists

5 bit counter it denotes the stage and 3 bit counter for 8

butterfly operations for each stage, the total denotes the

state.

Addrb [2:0] - here this is the address where the data would

be read from the ram or memory location for the butterfly

operation.
Doutb[63:0]- The data which is read from the ram will

apply as an inputs to the multiplexers the data will be in

hexadecimal form i.e. 64bit 32 bit represents real part and

other 32bit

VI. CONCLUSION

As the Fast Fourier Transform (FFT) is simply a

professional technique to compute the Discrete Fourier

Transform (DFT). Whilst memory based FFT processors

need less hardware resource but require operating at

higher clock frequency to meet the throughput. In this, A

Verilog implementation of floating point FFT has been
generated with reduced addressing logic using single

precision floating point number IEEE 754 standard and

improved the throughput of the system with respect to the

speed in terms of high clock frequency. The proposed FFT

algorithm is synthesized using vertex 6 as an target device.

Synthesis is performed with Xilinx version 13.The

synthesis results for a 16-point FFT with 64-bit complex

number inputs show a maximum clock frequency of

463.6MHz compared to existing method.

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7954`

REFERRENCES
[1] J.W. Cooley and J.W. Tukey ―An algorithm for the machine

calculation of complex Fourier series," Mathematics Computation,

Vol. 19, 1965, pp 297-301.

[2] Xin Xiao, An Efficient FFT Engine With Reduced Addressing

Logic Student Member, IEEE, Erdal Oruklu, Member, IEEE, and

Jafar Saniie, Senior Member, IEEE transactions on circuits and

systems—ii: express briefs, vol. 55, no. 11, November 2008

[3] Y. Ma, ―An effective memory addressing scheme for FFT

processors,‖IEEE Trans. Signal Process. vol. 47, no. 3, pp. 907–

911, Mar. 1999.

[4] D. Cohen, ―simplified control of FFT hardware,‖ IEEE trans.

Acoustic, Speech, signal process. Vol. ASSP-24, no. 6, pp. 577–

579, December 1976.

[5] Mario Garrido , J. Grajal, M. A. Sánchez, and Oscar Gustafsson, ―

Pipelined Radix- Feed forward FFT Architectures‖ , IEEE

transactions on very large scale integration (vlsi) systems, vol. 21,

no. 1, January 2013.

[6] Ahmed Saeed, M. Elbably, G. Abdelfadeel, ―Efficient FPGA

implementation of FFT/IFFT Processor‖, INTERNATIONAL

JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL

PROCESSING Issue 3, Volume 3, 2009

[7] Sneha N.kherde , Meghana Hasamnis, ―Efficient Design and

Implementation of FFT‖,

[8] Vinay Gautam, Kailash Chandra Ray, Pauline Haddow Hardware

efficient design of Variable Length FFT Processor IEEE, Issue-11,

2011

[9] R. M. Jiang, ―An area-efficient FFT architecture for OFDM digital

video broadcasting,‖ IEEE Trans. Consum. Electron., vol. 53, no. 4,

pp. 1322–1326, Nov. 2007. [2] W. D. Li and L. Wanhammar, ―A

pipeline FFT processor,‖ in Proc. IEEE Workshop Signal Process.

Syst., Oct. 1999, pp. 654–662.

[10] S. S. He and M. Torkelson, ―A new approach to pipeline FFT

processor,‖ in Proc. 10th Int. Parallel Process. Symp., Apr. 1996,

pp. 766–770.

[11] T. M. Hopkinson and G. M. Butler, ―A pipelined, high-precision

FFT architecture,‖ in Proc. 35th Midwest Symp. Circuits Syst.,

Aug. 1992, vol. 2, pp. 835–838.

