
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6495

Advanced Quick Sort with Parallel Processing

Dixit Bali
1
, Anshu Garg

2
, Madhusudan

3

Student, School of Computer Science & Engineering, Bahra University, Shimla, H.P, India1,2

Assistant Professor, School of Computer Science & Engineering, Bahra University, Shimla, H.P, India3

Abstract: Quick sort algorithm is a sorting algorithm that works on the principle of divide-and-conquer, making sub-

lists(sub-array) out of the given problem domain and then recursively applying the same swapping technique till the

whole list is sorted. There are numerous operations involving comparison, swapping and assignments in the quick sort
algorithm. In this paper we have proposed a new algorithm that is an enhanced version of original quick sort. The idea

behind this is to reduce the number of steps, in order to achieve that we have introduced parallel processing which

simultaneously deals with number of sub-arrays at the same time. The algorithm is recursive, but with the help of

parallel processing the number of steps is considerably reduced and all the cases can be easily dealt with. There is

more requirement of memory in this algorithm since all the sub-arrays are parallel processed, but there is significant

reduction in time complexity when the list contains large number of elements.

Keywords: Slots, parallel processing, touched elements, reference element, MIN and MAX.

I. INTRODUCTION

Sorting is a technique used in the field of computer

science to rearrange a given list of elements in a specified
logical order [1], for example for character input,

rearranging the list in an increasing order of alphabets.

Sorting is one the most important task that has to be

performed efficiently when we have to work with big data

[2].The entire Database based applications need sorting in

a way that saves time and increases visual consistency of

the data [3]. Certain algorithms are devised to carry out the

process of Sorting. According to [5], one of the most

efficient algorithms to Sort, as developed by [4], is Quick

sort algorithm. Quick sort is the easiest of all the sorting

algorithms, and has optimum resource utilization[6]. It is a
divide and conquer algorithm, which means, the full list is

divided into sub-lists and this process is recursive till we

find the correct position of all the elements [7]. The

elements are rearranged in an increasing order of their

existence. The elements in the left sub-array are less than

the pivot element and the right sub-array has all the

elements greater than the pivot. Thus the pivot is the basis

of comparison between left and right sub-array. The

boundary elements are stored in the stack namely the

LOWER and UPPER stack respectively [8]. Thus the Push

and Pop operations are applied on these stacks.

II. ADVANCED QUICK SORT: AN IDEA

Advanced Quick sort is the advanced implementation of
the original Quick sort algorithm given by [9]. Though the

basic working is the same, that is, in this proposed

algorithm we are using the same sub-list concept. The

traversing direction is changing after every step as it was

changing in the case of [10], starting from right to left

traversal. The list is traversed from right to left and left to

right respectively in every adjacent step so as to find the

least or the greatest element with respect to the reference

element in every step and hence interchanging the location

of both elements.

In this proposed algorithm, the list is divided into sub

units/sub-lists called slots. The slot starts from the first

touched element to the next touched element. These slots

are parallel processed and in one step, all the slots are
processed and executed. If there is interdependence

between two elements to interchange to a single slot

position, we also have mentioned a special case scenario

to carry out the process smoothly without any error. The

reference element in the starting of the process is the

extreme left element in every slot (this is the case when

the list is traversed from right to left) otherwise the right

most element of the slot. Every element that is

interchanged is highlighted and thus it becomes the

reference element for its own slot.

Before carrying out the advanced Quick sort technique, we

find the MIN and MAX elements in the list and

interchange them with the A[K] and A[N] respectively in

the array of A[K],A[K+1],…,A[N]. This sorts the first and

last element of the array. Now we can carry the proposed

technique.

In this proposed algorithm, we have implemented a

technique called Parallel Processing. This is a method of

simultaneously solving each slot in parallel in a given step.

This helps us to improve the efficiency of [11].

III. EXAMPLE OF ADVANCED QUICK SORT

Question :- Sort the list:
44,33,11,55,77,90,40,60,99,22,88,66.

STEP 1 (A)

Find the location LOC of the smallest element in the list of

N elements A[1],A[2],A[3],….,A[N], and then interchange

A[LOC] and A[1]. Then A[1] is sorted.

Set MIN: = A[K] and LOC: = K and then traverse the list,

comparing MIN with each other element A[J] in the array

from A[K] to A[N].

a) If MIN <= A[J], then simply move to the next

 element.

b) If MIN >A[J], then update MIN and LOC by

 setting MIN := A[J] and LOC:= J.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6496

After comparing MIN with the last element A[N], MIN

will contain the smallest among the elements among

A[K],A[K+1], …,A[N] and LOC will contain its location.
[12]

The smallest element is 11 at A[3] so interchange A[1]

A[3] , that is, interchange 44 and 11 to get the list:

11,33,44,55,77,90,40,60,99,22,88,66

STEP 1 (B)

Similarly, find the largest element in the list and

interchange the largest element with A[N] element in the

array A[K],A[K+1],…,A[N]. Thus A[N] will be sorted.

Set MAX: = A[K] and LOC: = K and then traverse the list,

comparing MAX with each other element A[J] in the array
from A[K] to A[N].

a) If MAX >= A[J], then simply move to the next

 element.

b) If MAX <A[J], then update MAX and LOC by

 setting MAX := A[J] and LOC:= J.

After comparing MAX with the last element A[N], MAX

will contain the largest among the elements A[K],

A[K+1],…,A[N] and LOC will contain its location.

The largest element is 99 at A[9] so A[9] A[12], that

is, interchange 66 and 99 to get the list:

11,33,44,55,77,90,40,60,66,22,88,99

STEP 2

Now we will consider the output list of Step 1 b).

As 11,44,66,99 are interchanged/touched elements, we

will consider them as the basis of comparison.

Use the first touched element that is 11 in the list at LOC:

= 1 and so reference element REF: = A[1] and consider
the length of the slot till the next touched element that is

44 at LOC: = 3.

Now we check any element less than 11 traversing the list

from right to left from 44(44 included).

Thus we end up meeting 11 as no element is less than 11.
So now we continue the process and thus now the

reference element REF: = A[3] at LOC: = 3, which is

element 44 and the slot is narrowed down from 44 till

66(44 and 66 included) and traversed from right to left

only, in the same step, finding an element less than 44.

Thus from 66, 40 is the element that is less than REF and

so we interchange A[3] A[7].

And lastly in the same step we consider the slot 66 to 99

with reference element REF: = A[9] and thus search an

element less than 66 traversing from right to left of this

individual slot.

We get 22 so we interchange A[9] and A[10].

Thus combining all the slots, we get the list:

11,33,40,55,77,90,44,60,22,66,88,99

STEP 3

Now again we check the list considering

interchanged/touched elements but this time changing the

traversing direction from left to right finding the greatest

in each slot.

Thus the first slot is from 11 to 40 with the reference

element to be the right most in the slot REF: = A[3], that is,

element 40 and traversing from left to right that is, from

11 finding an element greater than 40.

We do not meet any element before meeting the reference

element REF itself.

So we continue the sorting and go to the next slot of

elements lying between touched elements 40 and 44(both

included). This time the reference element is the rightmost

in the slot that is element 44. So we traverse from 40 and

find an element greater than 44, which is 55 at A[4] so

A[4] A[7].

Now we move onto the next slot that is from 44 to 22.

REF: = A[9] which is element 22 and we need to find an

element greater than 22.

44 is the element greater than 22. Thus A[7] A[9].

But A[7] is being interchanged with A[4] also.

This leaves us with one of the few special cases:

An element being used in two slots that is being

interchanged at two places.

Fig. 1. Swapping in Exceptional Case

Thus we apply one special rule. We keep the middle

element constant and interchange the both conflicting

extreme elements that is A[4] A[9] leaving A[7]

untouched.

Fig. 2. Exchanging Only Touched Elements

Next we move to the slot between 22 and 66(both

included). Thus the REF: = A[10] that is element 66 and

we find the greatest element traversing from left to right

thus getting no element reaching the REF itself. So we

move onto the next slot.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6497

Now we consider 66 and 99 and reference element is 99

and we know this is the Max of the list thus no element

greater than 99 in the slot.
The list after this step is:

11,33,40,22,77,90,44,60,55,66,88,99

STEP 4

Now we will consider the above list of Step 3 and will

check the least element traversing from right to left in

every slot.

Thus first slot is 11 to 40(both included). Reference

element is 11 at LOC: = 1 and we will traverse from right

to left that is from 40 to 11 finding the least element than

11. There is no element meeting the requirement so we

move to the next slot.

The next slot is from 40 to 22. Reference element is 40

and we find an element less than 40 which in turn is 22.
Interchange 40 and 22. Move to the next slot.

The next slot is from 22 to 44. Reference element is 22

and we find an element traversing from 44 to 22 that is

less than 22. There is no element like that so we move to

the next slot.

The next slot is from 44 to 55. Reference element is 44

and there is no element less than 44 when slot is traversed

from right to left starting from 55 so we move to the next

slot.

The next slot is from 55 to 66 and there is no element less

than 55 when traversed form 66 towards 55. So we move

to the next slot.

The next slot is from 66 to 99 of the touched elements on

the extreme end and thus we find a number less than 66

from 99 but no element satisfies the condition.

So the list now is:

11,33,22,40,77,90,44,60,55,66,88,99

STEP 5

Now we will change the traversing direction from left to

right in every slot and check the greatest element

comparing with the right most touched element in the slot.

So the element 22 33 ; 77 44 ; 60 55 are

interchanged in different slots by the similar method.

So the list is:

11,22,33,40,44,90,77,55,60,66,88,99

STEP 6

Now we take the output list of the previous step and check

the slots by considering the least element traversing from

right to left with reference element to be the left untouched

element of the slot.

So the element 77 55 is interchanged to give a new

list:

11,22,33,40,44,90,55,77,60,66,88,99

STEP 7

We traverse the list from left to right.Find the greatest

element in the slot with the reference element to be the
right touched element of the slot.

So the element 90 55 ; 60 77 will be interchanged.

So the list is:

11,22,33,40,44,55,90,60,77,66,88,99

STEP 8

Next, we traverse the list from right to left finding the least

element in the slot, with the reference element to be the

left touched element of the slot.

So the element 90 60; 66 77 will be

interchanged.

So the list is:

11,22,33,40,44,55,60,90,66,77,88,99

STEP 9

In the next step we traverse the list from left to right
finding the greatest element in the slot, with the reference

element to be the right touched element of the slot.

So the element 90 66 is interchanged.

So the list is:

11,22,33,40,44,55,60,66,90,77,88,99

STEP 10

Now considering the above list and following the same

pattern that is changing the traversing direction from right

to left and changing the reference element to be the left

touched element of the slot.

So the element 90 77 is interchanged.

So the list is:

11,22,33,40,44,55,60,66,77,90,88,99

STEP 11

Again the same pattern has to be followed that results in

traversing the list from left to right with the reference

element to be the right touched element of the slot.

Thus no element is greater than the reference element of

each slot respectively. So the list remains the same.

STEP 12

Again the list has to be traversed from right to left with the

reference element in each slot to be left extreme element

of the individual slots and thus the interchanging is done

between 90 88 ,thus giving a sorted list:

11,22,33,40,44,55,60,66,77,88,90,99

IV. COMPARISON WITH QUICK SORT

We are solving the same example using quick sort

(Randomized).

Let the given input string of numbers to be sorted

is:44,33,11,55,77,90,40,60,99,22,86,66

{44,33,11,55,77,90,40,60,99,22,86,66} (1)

{44,33,11,55,66,90,40,60,99,22,86,77} (2)

{44,33,11,55,66,22,40,60,99,90,86,77} (3)

Now we have two arrays, so apply the above steps

individually on each sub-array.

{44,33,11,55,66,22,40,60} {99,90,86,77}

{44,33,11,55,66,22,40,60} {99,90,86,77} (4)

{44,33,11,55,60,22,40,66} {77,90,86,99} (5)

{44, 33,11,55,60,22,40} 66 77 {90,86,99} (6)

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6498

{40, 33,11,55,60,22,44} 66 77 {90,86} 99 (7)

{40, 33,11,22,60,55,44} 66 77 {90, 86} 99 (8)

{40,33,11,22}{60,55,44} 66 77 {90,86}99

 {40,33,11,22}{60,55,44} 66 77 {90,86} 99 (9)

{22,33,11,40} {44,55,60} 66 77 {86,90} 99 (10)

{22,33,11}40 44 {55,60} 66 77 {86,90} 99

{22,33,11} 40 44 {55, 60} 66 77 {86,90} 99 (11)

{11,33,22} 40 44 {55,60} 66 77 {86,90} 99 (12)

11 {33,22} 40 44 {55,60} 66 77 {86,90} 99 (13)

11 33, 22 40 44 {55,60} 66 77 {86,90} 99 (14)

11 {22,33} 40 44 {55,60} 66 77{86,90}99 (15)

Combined list is as: -

11,22,33,40,44,55,60,66,77,86,90,99
Title must be in 24 pt Regular font. Author name must be

in 11 pt Regular font. Author affiliation must be in 10 pt

Italic. Email address must be in 9 pt Courier Regular font.

V. RESULTS

For array1 {3,8,5,7,9,6,2,4,10,1} having ten elements.

For array2 {53,21,63,47,90,86,24} having seven elements.

No. of

elements

to be
sorted

Steps taken

by advanced
quick sort

Steps taken by

quick sort

12 12 15

10 11 14

07 04 06

VI. CONCLUSION

This paper proposed a new algorithm for sorting elements,

which is the advanced version of quick sort, termed as

Advanced Quick Sort. We have applied both the

algorithms namely quick sort & advanced quick sort on

same set of elements and the obtained results are listed

above. The comparison was performed on the number of

steps taken by both the algorithms. It has been found that

the number of steps taken by advanced quick sort is

comparatively less as compared to the original quick sort
(randomized).

FUTURE SCOPE

Though this paper provides a clear overview about how

Advanced Quick Sort is better than the original quick sort,

but an algorithm has not yet been proposed on a

mathematical model. This could be an area for further

advances in this field. Also there are some special cases

that cannot yet be solved using the above mentioned steps,

so a better algorithm can be proposed to deal with such

type of exceptional cases.

REFERENCES
[1] Robert Sedgewick, “Implementing Quick sort Programs”, Division

of Applied Mathematics and Computer Science Program, Brown

University, Providence, RI 02912, 1978 ACM 0001-0782/78/1000-

0847.

[2] Abdulrahman Hamed Almutairi and Abdulrahman Helal Alruwaili,

“Improving of Quick sort Algorithm Performance by Sequential

Thread or Parallel Algorithms”, GJCST, 2012.

[3] Madhavi Desai and Viral Kapadiya, “Performance Study of

Efficient Quick Sort and Other Sorting Algorithms for Repeated

Data”, 2011.

[4] C.A.R. Hoare, “Algorithm 64: Quicksort,” Comm. ACM 4, 7, 321,

July 1961.

[5] Laila Khreisat, “QuickSort A Historical Perspective and Empirical

Study”, IJCSNS, 2007.

[6] R. Sedgewick, Algorithms in C++, 3rd edition, Addison Wesley,

1998.

[7] Seymour Lipschutz, “DATA STRUCTURES“,Tata McGraw

Hill,2012.

[8] Seymour Lipschutz, “DATA STRUCTURES“, Tata McGraw

Hill,2012.

[9] C.A.R. Hoare, “Algorithm 64: Quicksort,” Comm. ACM 4, 7, 321,

July 1961.

[10] C.A.R. Hoare, “Algorithm 64: Quicksort,” Comm. ACM 4, 7, 321,

July 1961.

[11] C.A.R. Hoare, “Algorithm 64: Quicksort,” Comm. ACM 4, 7, 321,

July 1961.

[12] Seymour Lipschutz, “DATA STRUCTURES“, Tata McGraw Hill,

2012.

	Question :- Sort the list: 44,33,11,55,77,90,40,60,99,22,88,66.
	STEP 1 (A)
	STEP 1 (B)
	STEP 2
	STEP 3
	V. RESULTS
	VI. CONCLUSION
	FUTURE SCOPE
	REFERENCES

