
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6271

Detecting Resource Leaks in Java Program

Kiran Deshmukh
1
, Aarti Bhagure

2
 Prof.Zafar Ul Hasan3 Prof.Anil R.Auti4 Prof .Yogesh R Nagargoje

5

Student,CSE Department, Savitribai Phule Womens Engineering College, Aurangabad,India 1

Student,CSE Department, Savitribai Phule Womens Engineering College, Aurangabad,India 2,

Assistant Professor, Department of Computer, SITRC Nashik, India3

Assistant Professor ,Department of Computer, Dr. Seema Quadri Institute of Tech, Aurangabad, India 4

Assistant Professor,CSE Department, Savitribai Phule Womens Engineering College, Aurangabad,India 5

Abstract: We present and evaluate a new technique for detecting resource leaks in programs with dynamic memory
allocation. A resource leak refers to a type of resource consumption in which the program cannot release resources it has

acquired. Typically the result of a bug, common resource issues, such as memory leaks, often only cause problems in very

specific situations or after extensive use of an application. To verify the effectiveness of the patterns, experiments are given

to use them to detect real resource leaks in large open source projects. After you check your program for threading and

memory errors and it is clean, if you still have an intermittent failure that you cannot quite track down, it could be caused

by a resource leak.

Keywords: Such as, Detecting Resource Leaks in Java Program, Handling errors.

I. INTRODUCTION

 Memory leaks that are, memory allocated but no longer

accessible to the programs low program execution by

increasing paging, and can cause programs to run out of

memory. Detects challenging memory leaks and corruption

errors as well as threading data races and deadlock errors.

 Unfortunately, it is difficult to manage resources

automatically. Java provide efficient garbage collection to

aid programmers in managing memory objects, to acquire or
release other resources, it still needs to explicitly call APIs

provided by third party software libraries or low level

systems

These reachable objects survive collections because they

may conceivably be used in the course of program

execution. While this approach usually works well for

reclaiming memory no longer needed by the program, it is a

common error on the part of the programmer to leave an

inadvertent reference to an object that will never be accessed

by the program.

 A memory leak is a particular kind of unintentional

memory consumption by a computer program where the
program fails to release memory when no longer needed.

When a program requests OS to allocate some memory by

using calls such as „malloc‟, „calloc‟, new etc; and fails to

give back the resource to the OS after using it, then we can

say a memory leak has occurred.

A memory leak occurs when object references that are no

longer needed are unnecessarily maintained. These leaks are

bad. For one, they put unnecessary pressure on your machine

as your programs consume more and more resources. To

make things worse, detecting these leaks can be difficult:

static analysis often struggles to precisely identify these
redundant references, and existing leak detection tools track

and report fine-grained information about individual objects,

producing results that are hard to interpret and lack

precision.a single insignificant object can maintain a whole

graph of heavy objects in memory. to acquire or release

other resources, it still needs to explicitly call APIs provided

by third party software libraries or low level systems. For
example, the Oracle 9i JDBC Developer‟s Guide and

Reference

1http://www.javaperformancetuning.com/news/news116.sht

ml warn “If you do not explicitly close your connection and

Statement objects, serious memory leaks could occur.” In

this paper for resource leak handle by JSON parser. Json is

short for JavaScript Object Notation, and is a way to store

information in an organized, easy-to-access manner. In a

nutshell, it gives us a human-readable collection of data that

we can access in a really logical manner.

II. LITERATURE REVIEW

A key feature of memory management in Java is its garbage-
collected heap. A typical garbage collector that comes with

Java is a tracing collector, which determines which objects

should be preserved in memory by tracing all objects

reachable from a set of roots. These reachable objects

survive collections because they may conceivably be used in

the course of program execution.

In the best case, unnecessary references to individual objects

simply degrade program performance by increasing its

memory requirements and consequently the collector

workload. In the worst case, unnecessary references refer to

a growing data structure, parts of which are no longer in use.
A recent study1 downtime in production systems was due to

resource leaks, including memory leaks, files not closed,

locks that aren‟t released, and so on. For open source

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6272

projects, resource leaks can be easily introduced during code

check-in. It has been recognized that code refactoring is a

leading cause of introducing resource leaks. Careless
developers may concentrate on improving functionality

while forget to check the resource usage upon check-in.

Therefore, it is laborious to review, identify, report, and fix

such leaks. For example, it took 23 days and 87 project

revisions to fix an IO resource leak, LUCENE-21062, in

Apache Lucerne

An example of the heap differencing approach to detect

memory leaks in Java is Leakbot [19]. Leakbot combines

offline analysis with online diagnosis to find data structures

which potentially have memory leaks. The offline analysis

takes two heap snapshots and does a complete heap
differencing to find parts of the graph which may be leaking.

It then identifies the data structure(s) which contains these

potential leaks. Feeding this information back into the online

system, Leakbot then adds expensive object-instance

instrumentation only on those types that have already been

identified as potentially leaking. Leakbot requires two

program executions, both of which include substantial

overheads.

III. ALGORITHM FOR DISCOVERING RESOURCE

LEAKS

The Resource leak at each program point is obtained by

comparing the results of the two analyses. More precisely:
1. For each method of each class (apart from the main

method) we calculate its specifications. The specifications

describe the minimal state necessary to

run the method safely.

2. Using the results obtained in the previous step, we

calculate the precondition of each subprogram of the main

method. Here, the subprogram is defined with respect to the

sequential composition. The calculation of the precondition

of each subprogram is done in a backwards manner, starting

from the last statement in the program. The results are saved

in a table as (program location, precondition) pairs.
3. Using the forwards symbolic execution, intermediate

states at each program point are calculated and added to the

results table computed in step 2.

4. The corresponding states obtained in steps 2 and 3 are

compared, and as the preconditions obtained by the

backwards analysis are sufficient for safe execution of the

program, any excess state that appears in the corresponding

precondition obtained by the forwards analysis, is

considered a memory leak.

IV. MOTIVATIONAL EXAMPLES

In this section, we give an motivational example to
showcase that how we are able to detect an real world

resource leak. We may infer from the code that there exists a

resource usage pattern in Cassandra library

1. Connection.createStatement ();

2. Connection.close();

and the missing call to Connection.close() is a violation to

such a pattern. To extract this pattern, mining must be

performed on either Cassandra source codes or its execution
traces. However, this patten is not applicable to discover

resource leaks in other libraries because the names of classes

or methods may vary. The execution trace, and found that

Connection.createStatement() eventually called

java.io.connection.open() while Connection.close()

eventually called java.io.Connection.close() in behind. This

motivates us to extract the resource usage pattern from

standard Java API calls. As these patterns do not rely on any

specific library, they are universal enough to discover

resource leak on any library that written in Java.

V. RESULT OF RESULT LEAKS

In the experiments, we mine resource usage patterns

on Java IO API(IO) and Java Concurrent API(CONC),

which are two subsets of standard Java API. Our mining

experiment is conducted on the following scenarios:

Fig. 1. Program Performance and Result

We can observe from Figure that the number of leaks

present in program, the number o patterns, and the number

of association rules all decrease with the increase of min sup.

Besides, the number of patterns would be exponentially

large if min sup is below 1.0 for IO patterns and 12 for

CONC patterns. With the same order of magnitude of

running time, the min sup of IO patterns is lower than that of

CONC patterns, probably 268 because of the multiplicity of
Java IO APIs over Java Concurrent APIs. Note that the y-

axis of the left figure of Figure is in logarithmic scale.

Fig.2 Total progress of programmer

The above chart shows the total performance of

programmer, it define the resource leaks and normal

resources which is used in the program.

VI. CONCLUSION

The system provides an detect Resource Leaks in java

program. before code check-in, this paper proposes an

approach to record the most valueable base API calls during

program execution, and mine resource usage patterns from

the API call traces. The define programmer progress in

graph. we have defined a static analysis algorithm which

allows the detection of such allocated and unused objects

which cannot be freed by the Resource leaks.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6273

 ACKNOWLEDGMENT

We would like to thank our guide Prof.Y.R.Nagargoje, their

guidance and feedback during the course of the project. We

would also like to thank our department for giving us the

resources and the freedom to pursue this project.

REFERENCES

[1] B. Wright E. Perry, M. Sanko and T. Pfaeffle, “Oracle 9i JDBC

developer‟s guide and reference,” Tech. Rep., May 2002.

[2] B. Livshits and T. Zimmermann, “Dynamine: Finding common error

patterns by mining software revision histories,” in Proceedings of

ESEC/FSE, 2005, pp. 296–305.

[3] D. Distefano, P. W. O'Hearn, and H. Yang. A local shape analysis based

onseparation logic. In TACAS, pages 287{302, 2006.

[4] D. Distefano and M. J. Parkinson. jstar: towards practical veri_cation for

java. In OOPSLA, pages 213{226, 2008.

[5] G. Ammons, R. Bod´ık, and J. R. Larus, “Mining specifications,” in

Proceedings of POPL, 2002, pp. 4–16.

[6] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:

mining temporal API rules from imperfect traces,” in Proceedings of

ICSE, 2006, pp. 282–291.

BIOGRAPHIES

 Kiran Deshmukh-I am pursuing degree in

computer engineering from Savitribai Phule

Womens Engineering College in Aurangabad.

My area of interest is java, ASP.net.

Aarti Bhagure-I am pursuing degree in

computer engineering from Savitribai Phule

Womens Engineering College in Aurangabad.

My area of interest is ASP.net, java, DBMS.

Asst.Prof.Zafar UL Hasan is currently

working as Assistant Professor, in the

Department of Computer, at SITRC Nashik,

India3. His research area includes Image

Processing,Database,Security

Asst prof.Anil R.Auti is currently working as

Assistant Professor in the Department of
Computer, Dr. Seema Quadri Institute of Tech,

Aurangabad, India .His research area include

security,image processing Database .,Soft

Computing.

Yogesh Nagargoje is currently working as

Assistant Professor in the Department of
Computer science and engineering at Savitribai

phule women‟s engineering College, Sharnapur,

Aurangabad, Maharashtra, India. He has 3 years

of teaching experience. His research area includes Image

Processing, Keystroke Biometrics and Mouse Dynamics.

