
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5546

IMPROVING THE EFFICIENCY OF

SNAPSHOT ISOLATION

R.Suresh
1
, V.Amirtha Maria Cecilia

2
, G. Icewerya

3
, R. Thilagavathi

4

Assistant professor, Department of Information Technology, Sri Manakula Vinayagar Engineering College,

Puducherry, India
1

UG student, Department of Information Technology, Sri Manakula Vinayagar Engineering College, Puducherry,

India
2,3,4

Abstract: As transaction processing became an integral part in real time applications, isolation concepts are used to

maintain its integrity. The weaker isolation levels aimed at higher concurrency but are prone to integrity problems such

as lost updates, phantom reads. To avoid the above problems, SI which is a multi versioning concurrency control is

adapted. Therefore in this paper, we compare the performance of snapshot isolation with traditional isolation levels and

techniques like transaction chopping and escrow locking are implemented to improve the efficiency of snapshot

isolation.

Keywords: Concurrency control, Serializability, Snapshot Isolation(SI), (S2PL) Strict two Phase Locking

I. INTRODUCTION

Concurrent transaction processing is essential for efficient

performance of database systems. Real time database

applications receive hundreds of requests per second and

average response time has to be minimized without

compromising on correctness of execution
[2][1].

The correctness is ensured by Serializable execution while

response time is determined by extent of concurrency

allowed by the system
.[4]

 Hence, serializability and

optimum concurrency are the most desirable

characteristics of a concurrency control mechanism
[2]

.

Strict two-phase locking (S2PL) ensures Serializable

execution but suffers from limited concurrency. Many

systems that implement weaker levels of serializability,

allow non-serializable schedules, causing inconsistencies

in the database
[2].

 Thus there is a trade-off between level of

isolation and degree of concurrency. Snapshot Isolation, a

multi-version concurrency control, avoids most of the

typical anomalies and yet provides better concurrency than

S2PL
[3][4].

SI has been supported by some of the leading database

systems such as Oracle, Microsoft SQL Server, and

PostgreSql etc. However, not all schedules under SI are

Serializable. So, a given set of transactions can be allowed

to execute at a lower isolation level only if it is safe to do

so
.[3]

 Therefore the serializable snapshot isolation is

implemented to ensure serializability in concurrent

transactions avoiding the classic anomalies of snapshot

isolation such as read anomaly and write anomaly.

The paper is organized as follows. Section 2 briefs the

prior research. Section 3 discusses about the

performance of the isolation levels. The techniques of

transaction chopping and escrow locking are discussed in

Section 4 for testing serializability.

II. PRIOR RESEARCH

Isolation is the property of distributed systems that ensures

that concurrent transactions do not interfere with each

other. The generalized definitions of the isolations are

proposed in
[1]

 specifies a common definition for not only

locking but also optimistic and multi versioning

concurrency control. The paper [2] defines the phenomena

in which the weaker isolations fail in providing the data

integrity such as non-repeatable reads, phantom reads and

dirty reads. This paper introduces the newly defined

isolation called Snapshot isolation, which is based on

multi versioning concurrency control overcomes all the

classic integrity problems stated above. The paper [3]

describes the classic problem of read only anomaly in

snapshot isolation. It states that the snapshot isolation,

though avoids most of the concurrency problems, show

some of its the anomaly behavior in certain areas such as

lost update, write skew and read only anomaly when the

serializibity is not provided. The paper [4][5] proposes the

concept of making snapshot isolation Serializable. This

paper states the mechanism in which the snapshot isolation

executes serially offering good performance while

reducing the common serializable violations through

careful analysis of the transaction programs and is

implemented in the snapshot databases such as Berkeley

Db etc.

III. RESEARCH PROPOSAL

In the paper, there is comparison between the

performance between Snapshot isolation with the

traditional isolation levels.. Traditional lock based

concurrency system reduces the performance because of

lock contentions and waiting time
.[4]

Thus Snapshot

isolation which is a multi version concurrency control is

used to avoid the classic problems of lower level

isolations. SI produces non-serializable schedules causing

anomalies such as Read skew, Write skew and lost

updates
.[3]

 Thus the SI is made serializable in order to

avoid the serializability issues exhibited by SI.
[5]

The

Serializable Snapshot isolation allows to implement

multiple concurrent transactions to be executed serially

based in the “First Committer Wins”rule. It prevents the

execution of the concurrent transaction without any Read-

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5547

Write anomalies
[4].

 A log file is created for each access to

the database which stores both the time of modification

and updates made to the data
.[3]

 Multiple versions are

created for each time of execution and are stored in the

form of log files.
[4]

The time taken for executing multiple

transactions is greatly reduced when compared to

executing under single transaction.

A. Performance of isolation levels

The basic part in the database applications is to read one

record from the database, alter some fields on the record,

and save the updated record back to the database and it is

usually done in one transaction.
[1]

In this, the functionality

given by enterprise services (com+) is used to implement

the transaction. The performance of the isolation levels are

measured by running this transaction repeatedly and

concurrently by different threads. The combination of

these isolation levels with the sql update lock is used of

the throughput manipulation. A transaction with read

committed isolation level may read one record and

proceed with the other and the record that was read is not

locked, and a second transaction may update the record.

With transaction isolation level serializable, the record that

was read is locked until the end of the transaction, and no

transaction may update that record before the first

transaction has completed. Therefore, with the read

committed isolation level, fewer transactions may run

simultaneously. However, because the read committed

isolation level does not lock the records when reading

from the database, two simultaneous transactions may read

the same record at the same time. The first transaction

which will update the record will succeed, but the second

will fail, a concurrency violation error will be thrown.

With the serializable isolation level, the same sequence

will result in a deadlock.

Sql server provides the update lock, which instructs the

database engine to lock the record until the end of the

transaction. This will enter as many records as specified in

the number random textbox with a random generated

name. The number of successful calls will be displayed in

the grid. The test suite, starts with one thread in the first

column, and continues with powers of two up to the power

given in the text box number threads. For example if

number threads is 4, the test suite will run test cases for

threads 1, 2, 4, 8, and 16.

Figure: 3(a)Threads are been executing concurrently

generated by the isolation levels using com+ and update

lock.

Figure3(b) Read committed and serializable isolation level

constraints without update lock

Figure 3(c) Read committed and serializable isolation

levels with update lock.

The concurrent threads that are been executing in the

com+ and non-com+ classes with and without updlock

have been produced random values which indicates that

read committed and serializable isolation have similar

values in case of single thread execution but when

multiple threads are been executed it is shown

figure:3(b)(c) that serializable isolation level is effective

with and without updlock.

IV. TRANSACTION CHOPPING

Long-lived transactions often reduce the system

throughput significantly by denying other short

transactions executing concurrently, access to certain data

items results in long waits or abortion of other

transactions.
[7]

In such cases, the long-transactions are

chopped into smaller pieces which can be interleaved with

other transactions allowing greater degree of

concurrency
[8].

When chopping the transactions, there is a precaution to

avoid chopping that might lead to non-serializable or non-

recoverable schedules.
[7]

In many real-world applications,

logical transactions spread across multiple-screens are

implemented as a series of database transactions
.[8]

 When

logical transactions are split into multiple database

transactions, the programmer pays little attention to the

issue of concurrency control and serializability of the

logical transactions
.[7]

 Thus, it is necessary to have

appropriate guidelines for chopping
[8]

. Therefore the

chopping must undergo four dependencies based on the

occurrence of the transaction.

A. Transaction Dependencies

The transaction chopping mechanism has variant four

ways of dependency which is been categorized based on

the Shasha et al
[6]

concept of splitting the conflicts of

transactions where it is based on the occurrence of the

0

500

1000

1500

1 2 3 4 5

USR

URC

0

1000

2000

3000

1 2 3 4 5

USR
udplck

URC
udplck

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5548

read–write transactions. There is variant difference in the

commit and the abort transactions when there is

concurrent execution of the transaction which is

proceeding
[9]

 during the banking segments like the

banking operations , risk management , asset management

management .The dependencies of the transaction

chopping mechanism are –

 Read –Write dependency

 Write -Read dependency

 Write-Write dependency

Figure4(a)User driven transactions by the chopped

dependency.

I) Read-write dependency

With the phenomenon of the snapshot isolation , there is a

concept that the read transaction never block the write

transaction , so the version read by the transaction in the

log file will not have the effect on the read transaction
[8].

Figure4(b) T1, T2 performs read-write dependency.

For example the transaction T1 will read the record and

version get updated and then write transaction will be

updated in the database.

II) Write-read dependency

In the optimistic concurrency control , the transactions are

independent and separated . If the transaction T1 writes

the data item X it gets updated in the log file and when the

another transaction T2 reads the same data item it recovers

the data from the last record of the updated version so it

maintains the stability[5] and overcomes the lost update

anomaly which improves interoperability .

Figure4(c) T1,T2 performs write-read dependency

III) Write-write dependency

If transaction T1 update a data item X while a concurrent

transaction T2 also tries to update the same data item , it

will cause one of the transactions to abort, so the first

update will not be lost According to First-Committer-Wins

rule,[2] it is not possible to have two concurrent

transactions which both commit and both modify the same

data item[5].

Figure4(d) T1,T2 performs write-write dependency by

using FCFW rule.

B. Chopping of the transactions

The transaction chopping mechanism is been evaluated

with the execution of single query and multiple query

processing. In practice, implementations of SI usually

prevent a transaction from modifying an item if a

concurrent transaction has already modified it as. It has

higher consistency than repeatable read and overhead of

maintaining row versions.

Figure 4(e) The capture time during the single query

execution when values are inserted.

Figure 4(f) The capture time during the multiple query

execution when values are inserted.

With the comparison of the execution of the transaction

chopping mechanism with single query been executed one

by one the captured time is less to the captured time of the

multiple query executed without the transaction chopping

.mechanism .thus the efficiency of chopping mechanism of

the transactions prove to be effective in case of the

concurrent execution of the transaction in the snapshot

isolation.

C. Escrow Locking

Escrow locks provide a method for permitting long lived

transactions to update frequently accessed records without

forbidding other users from accessing them
[8].

 However, it

is most relevant and applicable to quantities that can be

changed incrementally.

The basic idea underlying Escrow transactions is as

follows:

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5549

a. They involve certain fields and quantities and a

class of tests and update operations on these quantities
[8] [6].

b. Whenever a transaction makes an attempt to

perform Escrow-type-update, if the operation is approved

then the system must guarantee that the update can be

performed at any time, and in any order with any subset of

updates
[7].

c. If there is a test clause is a necessary condition

for the update, then the guarantee should hold for the

validity of test clause . Any update added to the set of

already applied updates should not make the test condition

for some other previous update invalid.

d. For each request to update a field, a record is

created which contains the relevant information such as

transaction ID, parameters of request and field being

updated
.[8]

 For each field, a range of values which can be

assumed is maintained.

e. When a transaction that made a request to update

a certain field eventually commits/aborts,

Thus, all updates are actually applied only at the commit.

Thus it can be seen that the purpose behind designing

Escrow locks is to improve upon concurrency in long-

lived transactions which take very long time to complete

and hence taking the possession of the lock throughout the

execution of transaction could severely hamper

concurrency
.[9]

 Thus, escrow locking and chopping could

be considered as alternatives for improving concurrency.

Having escrow locking and chopping together could

further increase the throughput.

D. System Architecture

The user starts the transaction and the log file is been

created to store the modifications made on the data and is

versioned for future reference. The user gives the long

lived transactions as an input to the system, where the

transactions are chopped and given as output to the user
[7].

Once the chopped transactions get executed, the user

transaction are been performed and the changes is tracked

and versions are saved in the database .

Figure 4(e) System architecture

V. CONCLUSION AND FUTURE WORK

Thus we conclude the paper that the Serializable

implementation of Snapshot isolation provides a better

performance in response time since the well known

anomalies such as read only anomaly, write skew and lost

update have been overcome because of the serial

execution of the transactions by the transaction chopping

and escrow locking techniques. The future work of this

paper is to implement and test snapshot isolation in multi

core servers for the synchronous execution.

REFERENCE
[1] A. Adya, B. Liskov, and P. E.O’Neil”Generalized Isolation Level

Definitions”. In ICDE 2000.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P.O’Neil, “A Critique of ANSI SQL Isolation Levels,” Proc. 1995

ACM SIGMOD Int’l Conf. Management of Data, pp. 1-10, May

1995.
[3] Alan Fekete.” Allocating isolation levels to transactions. “In PODS

'05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 206-
215, New York, NY, USA, 2005.ACM Press.

[4] S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan,

"Automating the detection of snapshot isolation anomalies," in
Proceedings of the 33rd International Conference on Very Large

Data Bases (VLDB2007),Vienna, Austria, 2007

[5] Alan Fekete, Elizabeth O'Neil, and Patrick O'Neil. A read-only
transactions anomaly under snapshot isolation. SIGMOD Rec.,

33(3):12 - 14, 2011.

[6] A. Fekete, "Serializability and snapshot isolation," in Proceedings
of the 10th Australasian Database Conference (ADC '99),

Auckland, NewZealand,1999.

[7] Alan Fekete and Denis Shasha. “Making Snapshot Isolation
Serializable.” ACM Transactions on Database Systems, 37(2):492-

528,2010.

[8] Michael J. Cahill, Uwe Rohm and Alan D. Fekete.” Serializable
Isolation for Snapshot Databases”. Page 4, 2012.

[9] Dennis Shasha, Fran_cois Llirbat, Eric Simon, and Patrick
Valduriez. “Transaction chopping: Algorithms and performance

studies”. ACM Transactions on Database Systems, 20(3):325 - 363,

2011.
[10] Patrick E. O'Neil. “The escrow transactional method” ACM Trans.

Database Syst., 11(4):405 - 430, 1999.

[11] R. Schenkel and G. Weikum”Integrating Snapshot Isolation into

Transactional Federation”. In CooplS 2002.

[12] R. Schenkel, G. Weikum, N. Weienberg, and X. Wu. “Federated

transaction management with snapshot isolation” In 8th Int.
Workshop on Foundations of Models and Languages for Data and

Objects -Transactions and Database Dynamics, 1999.

[13] M. Alomari, M. Cahill, A. Fekete, and U. Rohm. “The cost of
serializability on platforms that use snapshot isolation”. ICDE

2008.

[14] Bernstein, Lewi.P, and Lu. S. 2000,” Semantic conditions for
correctness at different isolation Levels”. In Proceedings of IEEE

International Conference on Data Engineering (Feb.). IEEE

Computer Society Press, Los Alamitos, Calif., 57–66.
[15] Jung, H., Han, J.H., Fekete, A., R¨ohm, U., Yeom, H.Y “

Performance of serializable snapshot isolation on multicore

servers”(2013).
[16] Shiyong Lu , Patrick O’Neil , “Serializable Snapshot Isolation for

Replicated Databases in High Update Scenarios”,2012

