
ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7041

HEURISTIC BASED QUERY OPTIMIZATION

Vishal Hatmode
1
, Prof. Sonali Rangdale

2

Department of Information Technology, Siddhant College of Engineering, Pune, India1,2

Abstract: In this paper, we will enlist the process of SQL query optimization based on Heuristic approach. It is often

found in the database industry that a lot of time is consumed in executing inefficient SQL queries. The problem here is

that although the DBA knows that the queries red are inefficient, the large sections of people who are actually ring these

queries are unable to write efficient queries. As a result, the performance of the entire system degrades because of the

drastic fall in the system throughput i.e. the number of transactions performed per unit time is reduced. Typically, to

overcome this problematic situation, most of the people frequently consult the DBA for writing efficient queries. This

approach results in a lot of time loss. A better solution is using a Query Optimizer. A Query Optimizer will accept the

inputted user query and automatically generate a equivalent but highly optimized query. This will save a lot of time and
e ort. This in turn improves the system throughput and its overall performance. The Query Optimizer in this project is a

Heuristic Optimizer. It basically tries to minimize the number of accesses by reducing the number of tuples and number

of columns to be searched.

Keywords: Query Optimization, Heuristic Approach, tuples

I. INTRODUCTION

 Query optimization is a function of many relational

database management systems in which multiple query

plans for satisfying a query are examined and a good

query plan is identified. This may or not be the absolute

best strategy because there are many ways of doing plans.

There is a trade-off between the amount of time spent
figuring out the best plan and the amount running the

plan. Different qualities of database management systems

have different ways of balancing these two. Query

Optimizers are one of the main means by which modern

database systems achieve their performance advantages.

[1] Given a request for data retrieval, an Optimizer will

choose an optimal plan for evaluating the request from

among the manifold alternative strategies. Query

Optimizers already among the largest and most complex

modules of database systems, and they have proven

difficult to modify and extend to accommodate these

areas. The area of query optimization is very large within
the database field. It has been studied in a great variety of

contexts and from many divergent angles, giving rise to

several diverse solutions in each case. Over time, SQL

has emerged as the standard for relational query

languages. Two key components of the query evaluation

component of a SQL database system are the query

optimizer and the query execution engine [1].

Different Query Optimization Approaches

 Cost Based Optimization

 A cost-based query optimizer works as follows:

First, it generates all possible query execution plans.
Next, the cost of each plan is estimated. Finally, based on

the estimation, the plan with the lowest estimated cost is

chosen. Since the decision is made using estimated cost

values, the plan chosen may actually not be optimal. [1]

The quality of optimizer decisions depends on the

complexity and accuracy of cost functions used. It

includes different techniques such as use of dynamic

programming for deciding best plan. Its main drawback is

that it is very costly. As a result most of the optimizers do

not employ this strategy. A cost estimation technique is so

that a cost may be assigned to each plan in the search

space. Intuitively, this is an estimation of the resources

needed for the execution of the plan.[2]

 1. Generates all possible query execution plans and then
cost is

 Calculate

 2. Quality depends on complexity and accuracy of cost

 Function.

Cost-based query Optimization:

Algebraic Expressions for following query-

SELECT p.pname, d.dname FROM Patients p, Doctors

d WHERE p.doctor = d.dname AND d.dgender ='M'

Figure 1: Relational Algebra Expression for Query

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7042

Figure 2: Execution Plan

Advantages:
1. Rather than considering time constraints adapts to

client requirements

2. Speed of query retrieval increase

Disadvantages:

1. Uses cost based optimization hence expensive.

Semantic Query Optimization

 Two queries are semantically equivalent if they

return the same answer for a database. For this purpose it

uses integrity constraints to match results. Semantic query

optimization is the process of determining the set of
semantic transformations that results in a semantically

equivalent query with a lower execution cost. ODB-

Optimizer determines more specialized classes to be

accessed and reduces the number of factors by applying

the Integrity Constraint Rules.[2]

Advantages

1. Supports recursive queries and queries having negation,

disjunction.

Disadvantages:

1. Suitable for only simple prototypes.

2. No commercial implementations exist.

II.PROPOSED ARCHITECTURE

Existing System:

 Oracle currently uses cost based optimization, and

rule based optimization. The Oracle database provides

query optimization. You can influence the optimizer's

choices by setting the optimizer goal, and by gathering

representative statistics for the query optimizer. The

optimizer goal is either throughput or response time.

Oracle 7 introduced concept of cost based query
optimization. Oracle 10g contained both cost based and

rule based optimization. As rule based optimization

proved to inefficient oracle has removed rule based

optimization and current version of oracle i.e. 11g uses

cost based optimization only [2].

Proposed System

 The Query Optimizer in this project is a Heuristic

Optimizer. It basically tries to minimize the number of

accesses by reducing the number of tuples and number of

columns to be searched. Heuristic Optimization is less

expensive than that of cost based optimization. It is based

on some heuristic rules by which optimizer can decide

optimized query execution plan. [2]

 Heuristic Optimization is less expensive than that

of cost based optimization. It is based on some heuristic

rules by which optimizer can decide optimized query

execution plan. Important Heuristic Rules used are: [2][3]

1. Perform selection as early as possible.

2. Perform projections as early as possible.

 Cost-based optimization is expensive, even with

dynamic programming. Systems may use heuristics to

reduce the number of choices that must be made in a cost-

based fashion. Heuristic optimization transforms the

query-tree by using a set of rules that typically (but not in
all cases) improves execution performance.

1. Perform selection early (reduces the number of tuples)

2. Perform projection early (reduces the number of

attributes)

3. Perform most restrictive selection and join operations

(i.e. with smallest result size) before other similar

operations.

Some systems use only heuristics; others combine

heuristics with partial cost-based optimization.

Example of two rules

Perform selection as early as possible.

Original Query:

Select * from branch, customer where branch.name =

'Brooklyn' and customer. City = 'Brooklyn';

Transformed

Query:

Select * from (select * from branch where branch.name =

'Brooklyn'), (select * from customer where customer.

City= 'Brooklyn');

Performance enhancement:

Suppose there are branch and customer tables each have

100 and 100 tuples respectively.

Original query:

 100 * 100 tuples fetched

Optimized Query:

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7043

 Selection performed early hence say only 10 and 20

tuples selected so 10*20 tuples fetched.

2. Perform projection as early as possible:

Original Query: Select branch.id, customer.cid from

branch, customer where branch.name='Brooklyn';

Optimized Query:

Select * from (select branch.id from branch) t, (select

customer.cid from customer) where t.name='Brooklyn';

Performance Enhancement:

1) Projection operations reduce size of relations.

2) Reduces the number of columns in relation and hence

relation size reduces.

3) Better technique is to use selection rule.

Figure 3: Query Optimization Process Flow

Constraints

1. The optimizer is a Heuristic optimizer only. It does not

contain anything related to cost based optimization.

2. Parser has certain constraints like it takes only DML

queries (select queries) and not any DDL queries.

3. Also some of the clauses of SQL such as EXISTS,

NOT EXIST and ORDER BY is not taken into

consideration.

4. Before changing the backend database the

corresponding database schema has to be specified before

operating on it.

5. Transparency for user application is not possible

III. DESIGN OF THE PROPOSED SYSTEM

Design Specifications

 Query processing refers to range of activities

involved in extracting data from a database. The cost of

processing a query is usually dominated by disk access,

which is slow compared to memory access

Main tasks involved are:

1. Parsing the given SQL query.

2. Transforming it in the form of GLL.

3. Convert GLL query into relational algebra.

4. Optimization.

5. Regeneration of Queries in SQL format.

The steps involved in processing a query are as follows:

1. Parsing and translation

2. Optimization

3. Evaluation

 The first action system must take in query processing

is to translate a given query into its internal form. The
second action is query optimization that is it will generate

a variety of equivalent plans for a query, and choose the

least expensive one. And the third action is to evaluate

this query.

Javacc and Parser Generator:

 JavaCC is a parser generator and a lexical analyser

generator. Parsers and lexical analysers are software

components for dealing with input of character sequences.

Compilers and Interpreters incorporate lexical analysers

and parsers to decipher les containing programs, However

lexical analysers and parsers can be used in a wide variety

of other applications as well. The parser and translator is
the second module in the project. It has been developed

using the parser generator JavaCC. JavaCC constructs a

recursive descent top down parser when provided with

necessary grammar for SQL.

Javacc Working:

 The grammar was also provided with necessary

semantic actions which for translating the select

statements into the corresponding GLL (Generalized

Linked List) format. Thus the parser and translator have

been merged into single module. Now to be able to

understand this module working we will first have to
examine GLL. Generalized Linked List (GLL): Each

select statement will be mapped onto a GLL format so

that it can be easily translated into a corresponding

relational expression. The GLL structure consists of the

following four fields:

1. Type of node.

2. Contents of node.

3. Pointer to next node on same level.

Need for GLL:

 Single GLL statement can have many nested

statements inside and therefore it is necessary that each
individual level In the nested query be optimized

independently of the other levels by using GLL format the

different levels of nesting can be represented by different

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7044

levels in GLL. Thus each level can be translated

separately into relational algebra expression and can be

processed independently.

For example if we have query as

Select a from b where c<d;

The corresponding GLL is:

Figure 4: GLL Representation of Query

Relational algebra conversion

 Translating SQL Queries into Relational Algebra in

SQL a query can itself be translated into a relational

algebra expression on one of the several ways:

1. SQL query is first translated into an equivalent

extended relational algebra expression.

2. SQL queries are decomposed into query blocks, which

form the basic units that can be translated into the

algebraic operators and optimized.

3. Query block contains a single SELECT-FROM-

WHERE expression, as well as GROUP BY and

HAVING clauses.

4. Nested queries within a query are identified as separate

query blocks.

Translating SQL Queries into Relational Algebra

Example:

SELECT LNAME, FNAME FROM EMPLOYEE

WHERE SALARY < (SELECT MAX (SALARY)

FROM EMPLOYEE WHERE DNO=5);

The inner block

(SELECT MAX (SALARY) FROM EMPLOYEE

WHERE DNO=5)

Translated in:

MAXSALARY (σDNO = 5(EMPLOY EE))

The Outer block

SELECT LNAME; FNAME FROM EMPLOY EE

WHERE SALARY < C

Translated in:

Π (LNAME; FNAME (σSALARY > C (EMPLOY EE)))

C represents the result returned from the inner block.

1. The query optimizer would then choose an execution
plan for each block.

2. The inner block needs to be evaluated only once.

(Uncorrelated nested query).

3. It is much harder to optimize the more complex

correlated nested queries.

Example 2:

SELECT BALANCE FROM ACCOUNT WHERE

BALANCE < 2500;

Corresponding Relational Expressions are:

σbalance < 2500 (π balance (account))or

Πbalance (σbalance < 2500(account))

 A relational algebra expression annotated with

instructions on how to evaluate it is called as evaluation

primitive. Several primitives may be grouped together

into a pipeline, in which several operations are performed

in parallel. A sequence of primitive operations that can be

used to evaluate a query is a query evaluation plan or

query execution plan. The Query execution engine takes a

query evaluation plan, executes that plan, and returns the

answer to the query. The different evaluation plans for a

given query can have different costs. User will write a

query and optimizer executes the most e client evaluation

plan.

Equivalence of expressions

 This phase includes matching of relational algebra

with one of the forms in equivalence rules. An

equivalence rule says that expressions of two forms are

equivalent: We can transform either to the other while

preserving equivalence. By preserve equivalence we

mean that relations generated by the two expressions have

the same set of attributes may be ordered differently.

Equivalence rules are used by the optimizer to transform

expressions into other logically equivalent expressions.

Some important equivalence rules on relational algebra
are as follows:

Rule 1:

σθ1 ^ θ 2 = σθ1 (σ θ 2(E))

Sample query:

LHS un-optimized query:

Select * from loan where lid < 100 and bid > 1200;

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7045

Optimized query for RHS is:

Select * from (select * from loan where lid < 100) where

bid > 1200;

Rule 2:

ΠL1 (ΠL1; L2; (ΠL1…..Ln (E)) ..) = ΠL1 (E)

Sample query:

LHS un-optimized query:

Select lid from (select lid, bid from loan);

Optimized query for RHS is:

Select lid from loan;

Rule 3:

σθ1 (E1∞E2) = (σθ1 (E)) ∞ (E2)

Sample query:

LHS un-optimized query:

Select from loan; branch where loan:lid < 100 and branch:

bid = loan:lid; Optimized query for RHS is :

Select * from (select * from loan1 where loan1:lid < 100)

t; branch t1 where t1:bid = t:bid;

Rule 4:

σθ1 ^ θ2 (E1∞E2) = (σθ1 (E1)) ∞ (σθ2 (E2))

Sample query:

LHS un-optimized query:

Select * from loan, branch where loan.lid=100 and

branch.name=PUNE and branch.bid=loan1.lid;

Optimized query for RHS is:

Select * from (select * from loan where loan.lid=100 and
branch.name=PUNE) t1 where t.lid=t1.bid;

Rule 5:

ΠL1L2 (E1∞E2) = ΠL1 (E1)) ∞ (ΠL2 (E2))

Sample query:

LHS un-optimized query:

Select lid, name from loan1, branch where

branch.bid=loan.bid;

Optimized query for RHS is:

Select * from (select lid from loan1) t, (select name from

branch) t1 where t.bid=t1.bid;

Rule 6:

σθ1 (E1) - (E2) = σθ1 (E1)-σθ2 (E2)

Sample query:

LHS un-optimized query:

(Select bid from branch where bid < 1000) minus (select

bid from loan);

Optimized query for RHS is:

(Select bid from branch where bid < 1000) minus (select

bid from loan where bid < 1000);

Rule 7:

σθ1 (E1) ∩ E2 = σθ1 (E1) ∩ σθ1 (E1))

Sample query:

LHS un-optimized query:

(Select bid from branch where bid < 1000) intersect

(select bid from loan);

Optimized query for RHS is:

(Select bid from branch where bid < 1000) intersect

(select bid from loan where bid < 1000);

Rule 8:

ΠL (E1 U E2) = ΠL1 (E1) U ΠL (E2)

Sample query:

LHS un-optimized query:

Select bid from (select from branch where bid 1000)
union (select from loan1);

Optimized query for RHS is:

(Select bid from branch where bid 1000) union (select

bid from loan1 where bid < 1000);

Optimization

 In this stage, the query processor applies rules to the

internal data structures of the query to transform these

structures into equivalent, but more e client

representations. The rules can be based upon

mathematical models of the relational algebra. Expression

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7046

and tree (heuristics), upon cost estimates of different

algorithms applied to operations or upon the semantics

within the query and the relations it involves. Selecting
the proper rules to apply, when to apply them and how

they are applied is the function of the query optimizer.

This phase includes use of some heuristic rules such as

performing selections and projection operations as early

as possible.

Regeneration

 This phase includes regenerating queries in SQL

format from relational algebra expression and ring

resultant query to database using corresponding drivers.

For each level of nesting use individual relational algebra

expression of each level and for each of them follow the
same process. Finally integrate all the intermediate SQL

statements that will b passed to backend database.

Consider one example which will describe actual

relational process. Suppose user has inputted following

query:

Select Customer-name where Customer-name=awt and

Customer-id in (select * from Customer where Customer-

name=awt and Customer-SSN=200);

The following relational algebra given to regeneration

phase: ΠLσθ1 (σθ2 (σθ3 (E)))

IV. CONCLUSION

 We have proposed a new approach to translating a
SQL queries into equivalent highly optimized SQL

queries found in many commercial databases. A test

database is built consisting of several lacks records. This

test database will then be used to time the execution

speeds of "identical" queries in the existing and new built

query optimizer. It proves that as to the large amount of

data, data structure, complex transaction logic and request

for high data integrity and security in DBS query

optimization is of at most importance. One of the most

critical functional requirements of a DBMS is its ability to

process queries in a timely manner. This is particularly
true for very large, mission critical applications such as

weather forecasting, banking systems and aeronautical

applications, which can contain millions and even trillions

of records. The need for faster and faster, "immediate"

results never ceases. Thus, a great deal of research and

resources is spent on creating smarter, highly e client

query optimization engines. Some of the basic techniques

of query processing and optimization will be presented in

this project.

REFERENCES
[1]"Query Optimizer plan Diagram: Production, Reduction and

Application, Data Engineering (ICDE)", 2011 IEEE 27th

International conference

[2]Yannis E.Ioannidis paper on "Query Optimization" Computer

Sciences Department University of Wisconsin Madison, WI 53706

in 2011

[3]Leo Giakoumakis, Cesar Galindo-Legaria paper on "Testing SQL

Server's Query Optimizer: Challenges, Techniques and

Experiences" . IEEE Data Eng. Bull. 31(1): 36-43 (2010)

[4]Maier, Leonard Shapiro paper on "The Columbia Query Optimization

Project" Port-land State University (NSF IRI-9610013) and to the

Oregon Graduate Institute (NSF IRI-9619977)

	HEURISTIC BASED QUERY OPTIMIZATION

