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Abstract: In this paper, I present the methodology to increase the bit rate transmission from 10 Gb/sec to 40 Gb/sec using 

higher order soliton pulse in place of conventional pulse. Here I use the PMD fiber to reduce the effect of polarization mode 

dispersion on data transmission. I use Optsim simulator to simulate the system and for analyze the performance. I analyze the 

system performance using eye diagram, instantaneous optical power and electrical spectrum.  
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I. INTRODUCTION 

 

              The word “soliton” is meant to describe the particle 

like behavior of the optical pulses propagating through a 

medium. The pulses envelope for soliton not only 

propagates undistorted but also survives collisions just as 

particles do. The soliton are very narrow, high intensity 

optical pulses that retain their shape through the interaction 

of balancing pulse dispersion with the nonlinear properties 

of an optical filter. If the relative effect of SPM and GVD 

are controlled just right, and appropriate pulse shape is 

chosen, the pulse compression resulting from SPM can 

exactly offset the pulse broadening effect of GVD.  

Depending upon the particular pulse shape chosen , the 

pulse either does not change its shape as it propagates, or it 

undergoes periodically repeating change in shape. The 

pulses that do not change in shape are called fundamental 

solitons , and those that undergo periodic shape changes are 

called higher-order solitons . 

As discussed earlier, when a high-intensity pulses is coupled 

to fiber , the optical power modulates the refractive index 

seen by the optical excitation. This induces phase 

fluctuations in the propagating wave, thereby inducing a 

chirping effect in the pulse. When such a pulse traverses a 

medium with a positive GVD for the constituent frequency, 

the leading part of the pulse is shifted towards a longer 

wavelength, so that the speed in that portion increases. 

Conversely, in the trailing half , the frequency rises so the 

speed decreases. This causes the trailing edge to be further 

delayed. Consequently , in addition to a spectral change with 

distance, the energy in the center of the pulse is dispersed to 

either side, and the eventually take a rectangular shape. 

On the other hand, when a narrow high-intensity pulse 

traverses a medium with negative GVD for the constituents 

frequency, GVD counteracts the chirp produced by SPM. 

Now, GVD retards the low frequency in the front end of the 

pulse and advances the high frequencies at the back. The  

 

 

result is that is the high-intensity sharply peaked soliton 

pulses change neither its shape nor its spectrum as it travel 

along the fiber. Provided the pulse energy is sufficiently 

strong, this pulse shape is maintained as it travels along the 

fiber. In a standard optical fiber, there is a zero dispersion 

point around 1320 nm [1]. For wavelength shorter than 

1320nm, β2 is positive and it is negative for longer 

wavelengths. Thus soliton operation is limited to the region 

greater than 1320nm. 

More specifically, a chirped pulse can be compressed  

during the early stage of propagation whenever the GVD 

parameter β2 and chirp parameter „C‟ have opposite sign so 

that  β2C is negative. The nonlinear phenomenon of SPM 

imposes chirp on the optical pulse such that     C > 0. Since  

β2 <0 in the 1550 nm wavelength region ,the condition β2C < 

0 is readily satisfied. Moreover, as the SPM- induced chirp 

is power dependent, it is not difficult to imagine that under 

certain condition. SPM and GVD may cooperate in such a 

way that the SPM-induced chirp is just right to cancel the 

GVD-induced broadening of the pulses. The optical pulses 

would then propagate undistorted in the form of soliton.  

 

A. EVOLUTION OF SOLITON PULSE 
 

To derive the evolution of the pulse shape required for the 

soliton transmission, one needs to consider the NLS 

equation in the presence of GVD and SPM. This equation 

can be written as [2]    

     

               (1)      
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  mHere, A (z ,t) is the pulse envelop function and „z‟ is the 

propagation distance along the fiber. To discuss the soliton 

solutions of this equation as simply as possible, we first set    

α = 0 and β3 =0, it is useful to write this equation in a 

normalized form by introducing  τ = t / To,   ζ = z / LD   and 

U=A / √Po, where To is a measure of the pulse width, Po is 

the peak power of the pulse and LD  = To
2
 / | β2 | is the 

dispersion length above equation take the form : 

                             

                                                                                                                                                

(2)  

Where s = ± 1, depending on whether β2 is positive ( normal 

GVD) or negative (anomalous GVD). The parameter N is 

defined as 

                                                                                                        
                                                                                             

(3) 

It represent a dimensionless combination of the pulse and 

fiber parameter. For the three right-hand term in equation 

(3): 

1. The first term represent GVD effect of the fiber. Acting 

by itself, dispersion tends to broaden pulses in time.  

2.  The second nonlinear term denotes the fact that the 

refractive index of the fiber depends on the light intensity. 

Through the self modulation process, this physical      

phenomenon broadens the frequency spectrum of a pulse . 

3.  The third term represents the effect of energy loss or 

gain; for example, due to fiber attenuation or optical 

amplification, respectively. 

           Solving NLS equation analytically yield a pulse 

envelope that is either independent of „z‟ ( N=1) or that is 

periodic in „z‟( for higher-order soliton with    N ≥ 2). The 

NLS equation is wel known in the soliton literature because 

it belong to a specific class of nonlinear partial differential 

equation that can be solved exactly with a mathematically 

technique known as the inverse scattering method  [3-4]. 

Although the NLS equation supports soliton for both normal 

and anomalous GVD, pulse-like soliton are found only in 

the case of anomalous dispersion[8]. In our studies, we 

focus only the pulse-like soliton, where GVD is anomalous. 

In this case s = -1in equation (2). It is common to introduce 

u = NU as a renormalized amplitude and write the NLS 

equation in its canonical form with no free parameter as   

                                                                           

                                                                                              

(4) 

This equation can be solved by the inverse scattering 

method . Detail of this method are available in several books 

devoted to soliton[9-11]. The result obtained from the 

soliton may be summarized as follows: 

 When an input pulse having an initial amplitude u(0,τ) = 

N sech (τ) is launched into the fiber, its shape remains 

unchanged during propagation when N = 1. for integer 

values of N > 1, it follows a periodic pattern such that the 

input shape is recovered at  ζ = m π / 2, where „m‟ is an 

integer. 

 An optical pulse whose parameters satisfied the 

condition N=1, is called the fundamental soliton. Pulses 

corresponding to other integer values of N are called higher 

order solitons. The parameter N represents the order of the 

soliton. The soliton period „z0‟and soliton order N play an 

important role in the theory of optical soliton. 

 

II INFORMATION TRANSMISSION WITH 

                      SOLITONS 

     The NRZ format is commonly used because it uses about 

50% bandwidth as compared to the RZ format. However, 

the NRZ format cannot be used when soliton are used as 

information bits. The reason is easily understood by noting 

that the pulse width must be a small fraction of the bit slot to 

ensure that the neighboring soliton are well separated. It 

remains approximately valid for a train of solitons only 

when individual soliton are well isolated. This requirement 

can be used to relate the soliton width „To‟ to the bit rate „B‟ 

as  B= 1 / TB = 1 / 2q0T0, where „TB „ is the duration of the 

bit slot and 2q0 = TB / To is  the separation between 

neighboring solitons in normalized units. Typically, the 

spacing between solitons exceeds four times their full width 

at half maximum ( FWHM). 

 

III .WAVE THEORY 

Wave theory of light, based on Maxwell.s equations, 

provides a comprehensive and rigorous approach to 

understanding light propagation in optical fibers [5-7]. 

These equations represent the relations between various 

optical wave fields in terms of electric and magnetic fields 

associated with them. The fields vary with space and time. 

The time variation is considered harmonic so that the fields 

vary as: 

                                       (5) 

This results in dealing with complex valued fields with 

amplitude and phase. Taking the advantage of cylindrical 

symmetry of the fiber, following general vector wave 

equation for the optical fields can be derived from 

Maxwell.s equations [8]. 
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                                     (6) 

where for a step index fiber of core radius .a., the refractive 

index .n. is of the form: 

                                        (7) 

Equation (6) is written for the axial component Ez of the 

electric field vector. Similar equations can be written for 

other five components of E and H. However, it is not 

necessary to solve all six equations since only two 

components out of six are independent. It is customary to 

choose Ez and Hz as the independent components and 

obtain E , E , H and H in terms of these independent 

components. It may be noted that in general various field 

components are coupled, alongwith the explicit inclusion of 

refractive index variations into the wave equations. 

 

IV DISPERSION IN SINGLE MODE FIBERS 

 

Intermodal dispersion in multimode fibers leads to 

considerable broadening of short optical pulses. It is because 

of the different mode indices (or group velocities) associated 

with different modes. The main advantage of SM fibers is 

that intermodal dispersion is absent. However, pulse 

broadening does not disappear altogether. The group 

velocity associated with the fundamental mode is frequency 

dependent because of chromatic dispersion. As a result, 

different spectral components of the pulse travel at slightly 

different group velocities. This phenomenon is referred to as 

group velocity dispersion (GVD), or intramodal dispersion. 

It has two contributions; material dispersion and waveguide 

dispersion. In this section we discuss how GVD limits the 

performance of lightwave systems employing SM fibers. 

 

A.  GROUP VELOCITY DISPERSION 

 

Consider an SM fiber of length .L.. A specific spectral 

component at the frequency . . would arrive at the output 

end of the fiber after a time delay / g , T L v where .vg.is the 

group velocity, defined as [9] 

 
    (8) 

The frequency dependence of the group velocity leads to 

pulse broadening because different spectral components of 

the pulse disperse during propagation and do not arrive 

simultaneously at the output. If is the spectral width of the 

pulse, the extent of pulse broadening is governed by 

                                                              (9) 

The parameter is known as the GVD 

parameter. It determines how much an optical pulse would 

broaden on propagation inside the fiber. The frequency 

spread may also be determined by the wavelength range 

emitted by the optical source. Using, equation 

   
     (10) 

can be written as: 

 

 

 

       

                        (11) 

.D. is called the dispersion parameter and is expressed in 

units of ps / (km-nm). The effect of dispersion on the bit rate 

.B. can be estimated by using the criterion 

Using T from equation (11), this condition becomes 

 (12) 

The dispersion parameter .D. can vary considerably with the 

operating wavelength. The wavelength dependence of .D. in 

equation (11), can also be written in the form of frequency 

dependence of mode index n as [6] 

                                                                 (13) 

For standard SM fibers, material dispersion .DM. is negative 

at lower wavelengths and positive at higher wavelengths. 

The wavelength at which slope of the group index is zero is 

referred to as zero-dispersion wavelength . ZD 

On the other hand, waveguide dispersion . is 

small but negative for all wavelengths. The main effect of 

waveguide dispersion is to shift ZD to slightly higher 

wavelength, a typical value being 1310 nm. Since the 

waveguide dispersion depends upon fiber parameters such 

as core radius and index difference, it is possible to design 

the fiber such that ZD can be shifted to the vicinity of 1550 

nm [10-11]. Such fibers are called dispersion shifted fibers. 

It is also possible to tailor the waveguide dispersion such 

that the total dispersion is relatively small over a wide 
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wavelength range extending from 1300 . 1600 nm [12-14]. 

Such fibers are called dispersion flattened fibers. Waveguide 

dispersion can also be used to produce dispersion decreasing 

fibers (in which dispersion decreases along the fiber length 

because of axial variations in core radius) and dispersion 

compensating fibers (in which dispersion is normal and has 

relatively large magnitude). 

 

V  HIGHER ORDER DISPERSION 

 

From the previous discussion it may appear that the BL 

product of an SM fiber can be increased indefinitely by 

operating at ZD . The dispersive effects, however, do not 

disappear completely at this wavelength. Optical pulses still 

experience broadening because of higher-order dispersive 

effects, which are governed by the dispersion slope [8]. This 

feature can be understood by noting that .D. cannot be made 

zero at all wavelengths contained within the pulse spectrum 

centered at . ZD Clearly, the wavelength dependence of .D. 

will play its role in pulse broadening. The dispersion slope S 

dD/ d , is also called differential-dispersion parameter. From 

equation (7) it can be written as 

 
          (14) 

is the third-

order dispersion (TOD) parameter. 

At 

 
The numerical value of the dispersion slope .S. plays an 

important role in the design of modern WDM systems. Since 

S > 0 for most fibers, different channels have slightly 

different GVD values. This feature makes it difficult to 

compensate dispersion for all channels simultaneously. To 

solve this problem new kinds of fibers have been developed 

for which .S. is either small (reduced-slope fibers) or 

negative (reverse-dispersion fibers). 

 

VI  POLARIZATION MODE DISPERSION 
A potential source of pulse broadening is related to fiber 

birefringence because of small departures from perfect 

cylindrical symmetry. If the input pulse excites both 

polarization components, it becomes broader as the two 

components disperse along the fiber because of their 

different group velocities. This phenomenon is called 

polarization mode dispersion (PMD). In PM fibers, having 

constant birefringence, pulse broadening can be estimated 

from the time delay . T. between the two polarization 

components during propagation of the pulse. For a fiber 

length L, T is given by: 

                                                (15) 

where .x. and .y. identify the two orthogonally polarized 

modes and 1 is related to the difference in group velocities 

along the two principle states of polarization [15]. T/L is 

large (~ 1 ns/km) when the two components are equally 

excited at the fiber input but can be reduced to zero by 

launching light along one of the two principle axes. 

The situation is somewhat different for standard fibers. Here 

birefringence varies along the fiber length in a random 

fashion. In the case of optical pulses, the polarization states 

will also be different for different spectral components of 

the pulse. The final polarization state is not of concern for 

most of the systems, as photo detectors are insensitive to the 

state of polarization. What affects such systems is the pulse 

broadening induced by random changes in the birefringence. 

This is referred to as PMD induced pulse broadening. The 

analytical treatment of PMD is quite complex in general 

because of its statistical nature. A simple model divides the 

fiber into a large number of segments. Both the degree of 

birefringence and the orientation of the principle axes 

remain constant in each section but change randomly from 

section to section. In effect, each fiber section can be treated 

as a phase plate using Jones matrix [15]. Propagation of 

each frequency component associated with an optical pulse 

through the entire fiber length is then governed by a 

composite Jones matrix by multiplying individual Jones 

matrices for each fiber section. The composite Jones matrix 

shows that two principle states of polarization exist for any 

fiber. When a pulse is polarized along them, the polarization 

state at the fiber output is frequency independent to first 

order, in spite of random changes in fiber birefringence. 

These states are analogous to the slow and fast axes 

associated with PM fibers. It has been analyzed through 

numerical simulations that soliton splits into two pulses if 

large value of PMD and other higher order effects coexist. 

The same phenomenon has been experimentally 

demonstrated in a figure of eight mode locked fiber laser by 

introducing birefringence into the cavity through a gradual 

twist in the fiber [16] 

 

VII RESULT 

 

The results of the simulation trials are in the form of eye 

diagrams from which Q-value, jitter, BER, and eye opening 

has been measured and instantaneous power at 40Gb/sec bit 

rate transmission using fiber length of 1000 km. 
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a). EYE diagram       

 
 

b) Electrical Spectrum       

 
 

c) Instantaneous Optical power 

 
 

 

VIII  CONCLUSION 

Here, I conclude that the using soliton pulse in place of 

convention pulse bit rate increases to 40 Gb/sec. As we 

know that as the PMD increases the BER increases and the 

output electrical power decreases but I observe after 

simulation for conventional pulse that sometimes the BER 

decreases and the electrical power increases, this is due to 

the effect of the dispersion on the PMD.  Then I simulate the 

system for soliton pulse  and observe that the Q factor of the 

system improve and decrease the BER to 0.0227501  ( 40 

Gb/sec),also improve electrical spectrum and Instantaneous 

Optical power.  
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