

Hybrid PSO based Leach Algorithm for Reducing **Energy Consumption in Wireless Sensor** Networks

Anshuli Raina¹, Shonak Bansal²

Department of Electronics and Communication Engineering, Institute of Science and Technology, Klawad, India

ABSTRACT: An evolutionary algorithm for reducing energy consumption in wireless sensor networks (WSNs) is presented in this paper. Metaheuristic particle swarm optimization (PSO) algorithm and its variants is used for the selection of Cluster Head (CH) in such a manner so that its energy used uniformly with the delayed disintegration of the network. For this purpose, the LEACH algorithm, random clustering approach has been replaced by PSO clustering. The PSO variants G_{best} and L_{best} are used for clustering .A new hybrid PSO is also proposed for node clustering for which improved performance has been achieved. Simulation results show the improvement in energy conservation if we employ Hybrid PSO.

Keywords: Metahurastic Algorithm, Partical Swarm Optimization, LEACH Algorithm, Cluster head, Hybrid PSO

I. INTRODUCTION

Sensor networks have become valuable tool for monitoring Algorithms. Finally we conclude the paper. a variety of scenarios. Energy is a serious issue in sensor networks, as the applications display a limited set of characteristics. Thus, there is a need to optimize the Routing Protocols in Wireless Sensor Networks can be network architecture for the applications in order to classified as categorical and hierarchically based on the minimize resource consumption. The requirements and network topology. In flat routing, all nodes are assigned limitations of sensor networks make their architecture and equal roles and similar functionality whereas in protocols both challenging and divergent from the needs of hierarchical routing, they exhibit different roles [5]. traditional Internet architecture. A sensor network [1] [2] is Hierarchical Protocols are based on the formation of a network of many small, low power devices, called nodes, clusters. which are distributed in order to perform a global task. The sensor nodes, which consist of sensing, on board data A.Flat Routing processing component, and communicating components, directly influence the architecture WSNs [3] [4].

In WSN, tiny, low cost and low power sensor nodes are this type of network it is not possible to specify a global able to communicate with their environment by sensing or identifier to each node due to a large number of nodes. controlling physical parameters within a short range and Therefore, the base station sends queries to different parts work together to form a sensor network for gathering data of the field and waits for the data from sensors in selected from a field. The major concern in WSN is economic parts of the field. This approach is called data centric usage of energy of tiny and energy deficient nodes. A node routing [6]. SPIN (Sensor Protocols for Information via collects data from its vicinity and then transfers it to base Negotiation) [7] and DD (Direct Diffusion) [8] are two stations (BS). Communication is the most energy examples of the data centric routing protocols that save expensive activity of a node. Energy required to transmit energy by data negotiation and omitting the redundant varies exponentially with transmission distance therefore, data. it is advisable to use multi-hop communication in WSNs. A WSN's life-time largely depends on how efficiently it B.Hierarchical (Cluster-based) Routing carries a data packet from its source to its destination.

description about routing protocols and LEACH Protocol responsible for processing and communication, while other is given in section 2 and section 3.Section 4 summarises nodes can be used for sensing the target area. Hierarchical the assumption and energy model used in this paper. In routing is mainly considered as two layer architecture section 5, the brief overview of PSO and types of PSO is where one layer is engaged in cluster head selection and explained that are used in this paper. In section 6 results the other layer is responsible for routing. Cluster head in

and detailed analysis of the changes carried out to PSO

II. ROUTING PROTOCOLS

In flat routing protocols nodes play the same role and have similar functionality in transmitting and receiving data. In

In this kind of routing method, nodes play different roles The rest of paper is organized as follows the brief in transmitting and receiving data. Some of the nodes are hierarchical routing is the node which is responsible for collecting data from other nodes in the cluster, aggregating

all data and transmitting the aggregated data to the base IDs by using CSMA (carrier sensing multiple access) to station. Creating clusters and assigning communication join a cluster with strongest signal strength. task to cluster heads contributes to a more scalable and After that, each CH knows its own member nodes energy efficient network [6]. The main goal of all the information including the numbers and IDs. Based on the hierarchical routing protocols is to appropriately create message, the CH creates TDMA schedule table and clusters and choose cluster heads in order to reserve energy broadcasts it to the cluster members. So all the memberin the network.

In this paper, we have used LEACH algorithm i.e the starts. proposed PSO based scheme in LEACH.

III. LEACH PROTOCOL

LEACH (Low Energy Adaptive Clustering Hierarchy) is During the Steady-state phase, each node can turn off its first proposed by Wendi B. Heinzelman of MIT. LEACH radio until it senses the necessary data. The member nodes is a clustering-based protocol that uses a randomized can send their data to CH during their allocated schedule rotation of the local cluster base station (CH) to evenly table created during the set-up phase. As for the CHs, they distribute the energy load among the sensors in the have to keep up their communication status at all times so network [7]. LEACH uses localized coordination to enable as to receive the data from their member nodes. When the scalability and robustness for dynamic networks, and CH receives all the data sent by their members, it will incorporates data fusion into the routing protocol to reduce aggregate them at first and then send the aggregating data the amount of data that must be transmitted to base station. packets to BS in order to save energy. LEACH rearranges the network's clustering dynamically and periodically, making it difficult for us to rely on long lasting node-to-node trust relationships to create the A. Experimental setup: protocol secure. LEACH assumes every node can directly contact a base station by transmitting with sufficiently high To simulate LEACH, we have used random 100-node power. This protocol provides a concept of round. LEACH networks for our simulations with parameters used in [10]. protocol runs with many rounds. Each round contains two We placed the BS at a far distance from all other nodes. phases:

A. Cluster Setup phase

Nodes that are clustered heads in round r shall not be selected in the next 1/p rounds. The node whose number is 100 pJ/bit/m2 have power control and can expend the larger than the threshold will be selected as a cluster head. minimum required energy to reach the intended recipients. In a setup phase each node decides whether or not to The equations used to calculate transmission costs and become a cluster head for current round. The choice receiving costs for a k-bit message and a distance d are depends upon decisions made by the node by choosing a shown below: random number between 0 and 1. The threshold is set as:

$$T(n) = \frac{p}{1 - p(r \operatorname{mod}(1/p))} \text{ if } n \in G$$
(1)

Where,

p is the probability of the node being selected as a clusterhead node

r is the number of rounds passed

G is the set of nodes that have not been cluster-heads in the last 1/p rounds mod denotes modulo operator

Nodes that are cluster heads in round r shall not be selected in the next 1/p rounds. The node whose number is bigger than the threshold will select itself as the cluster-head. Then the CH will broadcast an advertisement message to inform their neighbourhood that it is the new cluster-head. The non-cluster nodes send the message containing their

nodes know their idle slots, and then the steady-state phase

B. Steady State phase

IV. SIMULATION METHODOLOGY

For a 50m x 50m plot, our BS is located at (25, 150) so that the BS is at least 100m from the closest sensor node.

B. Energy model for LEACH

Equations written as:

(i) Transmitting

$$ETx (k, d)$$

 $= Eelec * k + Eamp * k$
 $* d2$ (2)

(ii) Receiving

$$ERx(k) =$$

Eelec * k (3)

C. Parameter selection for simulation:

Following is the list of parameters required for the simulation of LEACH with encryption strategies.

The corresponding value of each parameter is also specified.

Table 1. Parameter setting for simulation.						
Length	Length of the field Area	100 m				
Width	Width of the field Area	100 m				
Num_Nodes	Total number of nodes	100				
bsX	x coordination of base station	50 m				
bsY	y coordination of base station	200 m				
max_Round	No. of Max Round	9999				
ctrPacketLength	Length of packet that sent for	200 bits				
	nodes to CH					
PacketLength	Length of packet that sent for	6400 bits				
	CH to BS					
initEnergy	Initial energy of each node	0.5nJ				
transEnergy	Energy for transferring of	50 nJ/bit				
	each bit (ETX)					
recEnergy	Energy for receiving of each	50 nJ/bit				
	bit (ETX)					
fsEnergy	Energy of free space model	10e-12				
		J/bit				
mpEnergy	Energy of multi path model	1.3e-15				
		J/bit				
aggrEnergy	Energy Data aggregation energy					
		J/bit				

D.Node deployment

In node Deployment,100 nodes positions are generated randomly in a 100*100 m2 area and a BS is also placed at (50, 200) position

Protocol

algorithm which applies to concept of social interaction to equations. problem solving where each individual is referred to as particle and represents a candidate

V. Particle Swarm Optimization(PSO) based LEACH solution. Each particle in PSO flies through the search space with an adaptable velocity that is dynamically modified according to its own flying experience and also LEACH-PSO is a population-based a biologically inspired flying experience of other particles using the following

$$v_{i}^{d}(t+1) = w \times v_{i}^{d}(t) + \varphi_{1} \times rnd() \times (p_{i}^{d} - x_{i}^{d}(t)) + \varphi_{2} \times rnd() \times (p_{g}^{d} - x_{i}^{d}(t)) x_{i}^{d}(t+1) = x_{i}^{d}(t) + v_{i}^{d}(t+1)$$
(4)

Where

d dimension

 $x_i^d(t+1)$ position vector at t+1 time for i particle in **d** dimension

rnd() is random number generator.

 φ_1 and φ_2 are learning rates governing the cognition and social components.

g represents the index of particle with best p-fitness.

w is the inertia factor that dynamically adjusts the velocities of particles gradually focusing the PSO into a local search.

A.Algorithm

1. Initialize the particle population by randomly assigning locations (X-vector for each particle) and velocities (Vvector with random or zero velocities- in our case it is initialized with zero vector)

2. Evaluate the fitness of the individual particle and record the best fitness Pbestand update P-vector related to each P_{best} .

3. Also find out the individuals' highest fitness Gbest and record corresponding position page.

4. Modify velocities based on P_{best} using eq3.

5.Update the particles position using eq4.

6.Terminate if the condition is met

7.Go to Step 2.

B.Types of PSO

1) $G_{bes}tPSO$:

In equation (5) above, new velocity at t+1 is generated with the help of global fitness which all the particles have achieved till iteration t. This equation is reproduced for easy understanding.

 $v_i^d(t+1) = w \times v_i^d(t) + \varphi_1 \times rnd() \times (p_i^d - x_i^d(t)) + \varphi_2 \times$ $rnd() \times (\boldsymbol{p}_{\boldsymbol{q}}^{d} - x_{i}^{d}(t))$ (5)

In this equation, p_g^d (given in bold) is position given by the global best fitness in dimension d. Usually, global best fitness concept is expected to present a global search exploration possibilities in the search space.

2)Lbest PSO:

A good optimization algorithm is expected to have both types of search capabilities i.e. global as well as local.

Local search capability is provided in PSO by p_i^d which is $v_i^d(t+1)$ is a velocity vector at t+1 time for i particle in ith individual best fitness based position till iteration t+1; this is expected to give a local search capability. Another concept of local search capability is L_{hest} PSO in which instead of taking global best fitness till iteration t+1 we take local best fitness based position in above equation in place of p_g^d . And above equation become

 $v_i^d(t+1) = w \times v_i^d(t) + \varphi_1 \times rnd() \times (p_i^d - x_i^d(t)) + \varphi_2 \times rnd() \times (p_l^d - x_i^d(t))$ (6) 3) Hybrid PSO:

A new PSO is proposed here which contains the concept of both types of PSO i.e G_{best} and $L_{\text{best.}}$ In this for having both types of search capabilities, we have divided social learning rate into two parts φ_2 and φ_3 and velocity at t+1 is determined by three components i.e individual best positions, global best position and last iteration best position.

$$\begin{aligned} & v_i^d(t+1) = w \times v_i^d(t) + \varphi_1 \times rnd() \times (p_i^d - x_i^d(t)) + \\ & \varphi_2 \times rnd() \times (\boldsymbol{p}_g^d - x_i^d(t)) + \varphi_3 \times rnd() \times (\boldsymbol{p}_l^d - x_i^d(t)) \end{aligned}$$

Table 2 : PSO	parameters for ex	periment
---------------	-------------------	----------

Sr.	Type of	Parameters
No.	PSO	
1	G _{best} PSO	Population Size =30,
2	L _{best} PSO	Population Size =30,
3	Hybrid PSO	

VI. Simulation Results and Analysis

Following table shows the result obtained from the experimentations done as per the setup .In this setup ,three algorithm based on PSO and its varients are used and efficiency of algorithm are measured by assessing total no .of rounds up to which network surives and find out that the hybrid PSO is better than that of two i,e G_{best} PSO and L_{best} PSO. Here we are using three objectives i,e no.of packets sent to BS From cluster head, No of dead nodes per round and Nodes Remaining Energy pattern in WSN and then the efficiency of network has been checked and we find out that the hybrid PSO is better.

WSN Routing Algorithm	Network Life (in rounds)	Rounds in which first Node Dead	Rounds in which 50% Node Dead	No of packets sent in total rounds	Remaining Energy after 70% node is dead (Joules)
Gbest PSO LEACH	1795	556	1255	11811	2.42
Lbest PSO LEACH	1826	563	1271	11819	2.39
Hybrid PSO LEACH	2148	596	968	12338	1.81

We have shown these statistics in the following figures.

VII. CONCLUSION AND FUTURE SCOPE

In this paper, the network life, number of dead nodes and 14. I. Demirkol, C. Ersoy, and F. Alagoz, "MAC Protocols for Wireless number of packets are considered to sent BS affect performance of routing algorithm in WSN. The performance of the cluster based routing protocol shows some differences by varying life pattern among nodes and the number of dead nodes. From our experimental analysis, we conclude that Hybrid PSO based LEACH algorithm gives better performance in network life overall but could not restrict early network disintegration. . We have improved the network life but one thing; we have observed that node starts dying early which is an area of concern in PSO LEACH. This can be addressed by considering other parameters of nodes characteristics such as remaining node

energy in addition to distance between them while clustering them. This technique may delay early node death problem.

REFERENCES

- 1. I.F. Ak yildiz, W. Su, Y. Sankarasubramaniam, E. Cavirci, "Wireless sensor networks:a survey", Computer Networks, vol. 38, Issue 4, pp. 393-422, 2002.
- Sarjoun S. Doumit, Dharma P. Agrawal,"Self- Organizing and Energy-Efficient Network of Sensors, ⁵ IEEE, pp. 1-6 (2002). L. Subramanian and R. H. Katz, "An Architecture for Building Self
- 3 Configurable Systems," in Proc. IEEE/ACM Wksp. Mobile Adhoc Net. and Comp., Boston, MA ,Aug 2000.
- J. Pan, L. Cai, T. Hou, Y. Shi, and S. Shen, "Topology control for wireless sensor networks," in Proceedings of the Nineth ACM MobiCom, (2003).
- M. Ilyas and I. Mahgoub., Handbook of Sensor Networks, "Compact Wireless and Wired Sensing Systems," International Journal of Distributed Sensor Networks, vol. 4, no. 4, pp. 369- 369, 2008.
- Jinsuk Baek and Paul Fisher, "Dynamic Cluster Header Selection and Conditional Re-clustering in Wireless Sensor Network," Winston-Salem State University, Winston-Salem ,NC 27110 USA ,p.p 2249-2257, December 2010
- T. Gao, D. Greenspan, M. Welsh, R.R Juang and A. Alm, "Vital 7 Signs Monitoring and Patient Tracking Over a Wireless Network,"in proceeding of the 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. vol. 1, pp.102-105
- 8. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva. Directed diffusion for wireless sensor networking, IEEE/ACM Transactions on Networking, vol.11, no.1, pp. 2- 16, 2003
- J. N. Al-Karakiand A. E. Kama, "Routing techniques in wireless 9 sensor networks asurvey,"Wireless Communications, IEEE, vol.11, no.6, pp. 6- 28, 2004.
- 10 W. B. Heinzelman, A. P. Chandrakasan and H. Balakrishnan,"An application-specific protocol architecture for wireless microsensor networks," IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660- 670, 2002.
- 11. M. Castillo-Effen, D.H. Quintela, R. Jordan, W. Westhoff, W. Moreno, "Wireless sensor networks for flash-flood alerting,"in Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, 2004, vol. 1, pp. 142-146.
- 12. C.Y Chong, S. P. Kumar,"Sensor networks: evolution, opportunities, and challenges," in Proceedings of the IEEE, 2003, vol. 91, no. 8, pp. 1247- 1256.
- 13. G. Coyle, L. Boydell and L. Brown, "Home telecare for the elderly.," Journal of Telemedicine and Telecare, vol 1, pp183-184, 1995
- Sensor Networks: A Survey,"IEEE Communication Magazine, vol. 44, Issue 4, pp.115-121, 2006.
- Q. Fang, F. Zhao, and L. Guibas, "Lightweight sensing and 15. communication protocols for target enumeration and aggregation," in Proceedings of the 4th ACM international symposium on Mobile ad hoc networking, 2003, pp. 165-176.
- 16. Elham Hajian, Kamal Jamshidi,"Increasing WSN Lifetime by Using Learning Automata for Optimal Route Selection," in proceeding International Conference on Information, Networking and Automation (ICINA) 2010, p.p 215-218.
- Ye, J. Heidemann, and D. Estrin, " An energy-efficient MAC 17. W. protocol for wireless sensor networks,"in proceeding of the Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, 2002. vol.3, pp. 1567-1576.