
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5609

Deadline Based Map-reduce Workload

Management in Multijob

V.Sathya
1
, K.Chandramohan

2

PG Scholar-M.E, CSE, Gnanamani College of Engineering, Namakkal, T.N, India1

Head of Department, CSE, Gnanamani College of Engineering, Namakkal, T.N, India2

Abstract: A scheduling algorithm and technique for managing multi-job Map Reduce workloads that relies on the
ability to dynamically build performance models of the executing workloads, and uses these models to provide dynamic

performance management using Adaptive scheduler. One of the design goals of the Map-Reduce framework is mainly

based Adaptive scheduler to maximize data locality across working sets, in an attempt to reduce network bottlenecks

and increase overall system throughput. Data locality is achieved when data is stored and processed on the same

physical nodes. Sometime the server based executing workloads are not delivered to those particulars. Because, the

multi-job network areas occurred some problem. So, the server storage is too high. In this paper, overcome this

problem by the use of another server that is related to the main server. The problem of main server workload data

executing to related server. Finally, the unreachable storage data delivered from related server to the particular receiver.

So, every time free storage space and speed process in this server and also improve the server response time.

Key Words: Map Reduce, performance management, task scheduling

I. INTRODUCTION

Cloud computing has dramatically transformed the way

many critical services are delivered to customers for

example, the Software, Platform, and Infrastructure as a

Service paradigms, and at the same time has posed new

challenges to data centers. The result is a complete new

generation of large scale infrastructures, bringing an
unprecedented level of workload and server consolidation,

that demand new programming models, management

techniques and hardware platforms. At the same time, it

offers extraordinary capacities to the mainstream market,

thus providing opportunities to build new services that

require large scale computing. Therefore, data analytics is

one of the more prominent fields that can benefit from

next generation data center computing. The intersection

between cloud computing and next generation data

analytics services points towards a future in which

massive amounts of data are available, and users will be
able to process this data to create high value services.

Consequently, building new models to develop such

applications, and mechanisms to manage them, are open

challenges. An example of a programming model

especially well-suited for large-scale data analytics is

MapReduce, introduced by Google in 2004.

Map Reduce workloads usually involve a very large

number of small computations executing in parallel. High

levels of computation partitioning, and relatively small

individual tasks, are a design point of Map Reduce

platforms [1]. While it was originally used primarily for

batch data processing, its use has been extended to shared,

multi-user environments in which submitted jobs may

have completely different priorities [6]. This change
makes scheduling even more relevant. Task selection and

slave node assignment govern a job’s opportunity to

progress, and thus influence job performance.

One of the design goals of the Map Reduce framework is

to maximize data locality across working sets [3], in an

attempt to reduce network bottlenecks and increase overall

system throughput. Data locality is achieved when data is

stored and processed on the same physical nodes [7].

Failure to exploit locality is one of the well-known

shortcomings of most multi-job MapReduce schedulers,

since placing tasks from different jobs on the same nodes
will have a negative effect on data locality[4][5].

At the same time, there is a trend towards the adoption of

heterogeneous hardware and hybrid systems in the

computing industry. Heterogeneous hardware will be

leveraged to improve both performance and energy

consumption, exploiting the best features of each platform.

For example, a Map reduce framework enabled to run on

hybrid systems has the potential to have considerable
impact on the future of many fields, including financial

analysis, healthcare, and smart cities-style data

management. MapReduce provides an easy and

convenient way to develop massively distributed data

analytics services that exploit all the computing power of

these large-scale facilities. Huge clusters of hybrid many-

core servers will bring workload consolidation strategies

one step closer in future data centers.

Fig1: A Map Reduce computation

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5610

Fig1: A Map Reduce computation

Scheduling algorithm and technique for managing multi-

job Map reduce workloads that relies on the ability to
dynamically build performance models of the executing

workloads, and uses these models to provide dynamic

performance management [2]. At the same time, it

observes the particulars of the execution environment of

modern data analytics applications, such as hardware

heterogeneity and distributed storage. Beyond the

formulation of the problem and the description of the

scheduling technique, a prototype has been implemented

and tested on a medium-size cluster. The experiments

study, separately, the scheduler’s ability to: meet high

level performance goals guided by user-defined
completion time goals;

 favor data locality;

 Deal with hardware heterogeneity.

Introducing hardware affinity and relative performance

characterization. Results presented in this paper are

partially based on our previous work. In this paper

integrate previous partial contributions to build a complete

scheduling approach that faces the challenges of the

management of data analytics applications executed on

next generation data centers. And also extend previous

work with our scheduling proposal to enhance data

locality and the experiments to evaluate it. The main

contribution of this work is to overcome the problem of
data overload in the server. The server sends the sender

data to the receiver if it is in online status, otherwise it has

been stored in the server. Moreover the main server

storage of un-received data is too high. So the Dynamic

resource allocation algorithm using the main server of un-

received storage data forward to physical node of related

server. Finally, the unreachable storage data delivered

from related server to the particular receiver. So, every

time free storage space and speed process in this server.

II . RELATED WORK

Process scheduling is a deeply explored topic for parallel

applications, considering different type of applications,

different scheduling goals and different platform

architectures ([10]). There has also been some work

focused on adaptive scalable schedulers based on job sizes

([11], [12]), but in addition to some of these ideas, our

proposed scheduler takes advantage of one of the key
features of MapReduce: the fact that jobs are composed of

a large number of similar tasks.

Fig2: Definition of -SMART (Definition 1) and SMART

MapReduce scheduling has been discussed in the

literature, and different approaches have been presented.

The initial scheduler provided by the Hadoop distribution

uses a very simple FIFO policy, considering five different

application priorities. In addition, in order to isolate the

performance of different jobs, the Hadoop project is

working on a system for provisioning dedicated Hadoop
clusters to applications [13], but this approach can result in

resource underutilization. There are several proposals of

fair scheduling implementations to manage data-intensive

and interactive applications executed on very large clusters

for MapReduce environments ([6], [7]) and for Dryad

([14], [15]).

Fig 3: The Quincy flow-based scheduler graph. The figure

shows a graph corresponding to the same set of jobs and

tasks as the queue based scheduler in Figure 3. There are

nodes in the graph for each root and worker task that the

scheduler knows about, as well as an “unscheduled node”

Uj for each job j. There is also a node Cm for each

computer m, a “rack aggregator” node R l for each rack l,
and a “cluster aggregator” node X. S is the sink node

through which all flows drain from the graph. Each root

task has a single outgoing edge to the computer where it is

currently running. Each worker task in job j has an edge to

j’s unscheduled node Uj, to the cluster-aggregator node X,

and to every rack and computer in its preferred lists.

Workers that are currently executing (shown shaded) also

have an edge to the computer on which they are running.

Graph edges have costs and capacities that are not shown

in the figure. The Appendix has a detailed explanation of

the structure of this graph and the costs and capacities that

allow us to map a min-cost feasible flow to a fair
scheduling assignment

The main concern of these scheduling policies is to give

equal shares to each user and achieve maximum utilization

of the resources. However, scheduling decisions are not

dynamically adapted based on job progress, so this

approach isn’t appropriate for applications with different
performance goals. There have been other proposals that

applications. In addition to our initial implementation [3],

others have shown interest in this particular topic. FLEX

[16] is a scheduler proposed as an add-on to the Fair

Scheduler to provide Service-Level- Agreement (SLA)

guarantees. More recently [16] introduces a novel resource

management framework that consists of a job profiler, a

model for MapReduce jobs and a SLO-scheduler based on

the Earliest Deadline First scheduling strategy. In [17], the

authors introduce a system to manage and dynamically

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5611

assign the resources of a shared cluster to multiple Hadoop

instances. Priorities are defined by users using high- level

policies such as budgets. This system is designed for
virtualized environments, unlike the proposed work, which

is implemented as a regular Hadoop MapReduce scheduler

and thus is able to run on standard Hadoop installations

and provide more accurate estimations. Regarding the

execution of MapReduce applications on heterogeneous

hardware, in [18] the authors consider the influence that

hardware heterogeneity may have on the scheduling of

speculative tasks. Our proposal in orthogonal to this one as

we do not face the scheduling of speculative tasks and we

have not enable this option in the configuration of our

execution environment. In [19] the authors focus on
avoiding stragglers (which may cause the execution of

speculative tasks). They show that most of them are due to

network traffic. Thus, although dealing with stragglers is

not the focus of our proposal, our scheduler is also

avoiding them as the percentage of local task that it is able

to achieve is around 100%. There are several works in the

literature that consider the heterogeneity trend on current

execution platforms. Studies the impact of heterogeneity

on large clusters and presents techniques to include task

placement constraints. More recently, Hadoop schedulers

have focused on being more aware of both resources

available in each node and resources required by
applications. In [8] [9] we adapt the Adaptive Scheduler to

be resource-aware.

III. PROPOSED METHOD

The proposed system overcomes the problem of data

overload in the server. The server sends the sender data to

the receiver if it is in online status, otherwise it has been

stored in the server. Moreover the main server storage of

un-received data is too high. So the Dynamic resource
allocation algorithm using the main server of un-received

storage data forward to physical node of related server.

Finally, the unreachable storage data delivered from

related server to the particular receiver. So, every time free

storage space and speed process in this server.

Fig4: System architecture

A. Time Based Task Assignment

A Map Reduce job has two different types of tasks,

depending on the execution phase of the job: file tasks and

arrival time tasks. In order to get suitable accuracy in the

job performance estimation, estimate the performance for

each job phase, file and attain time, separately. The task

assignment is assigned by the abuser. The abuser sends the

files to the other node. And also, the user sets the arrival
time of the file which they want to be sent. In this task

assignment the abuser state the receiver ID, files and the

time to attain the recipient node. Study on task assignment

strategies for a complex real-time network system is

presented. Firstly, two task assignment strategies are

proposed to improve previous strategies. The proposed

strategies assign tasks with meeting end-to-end real-time
constraints, and also with optimizing system utilization

through period modulation of the tasks. Consequently, the

strategies aim at the optimization to optimize of system

performance with while still meeting real-time constraints.

The proposed task assignment strategies are devised using

the genetic algorithm switch heuristic real-time constraints

in the generation of new populations.

The strategies are differentiated by the optimization

method of the two objectives-meeting end-to-end real-time

constraints and optimizing system utilization: the first one

has sequential genetic algorithm routines for the
objectives, and the second one has one multiple objective

genetic algorithm routine to find a Pareto solution.

Secondly, the performances of the proposed strategies and

a well-known existing task assignment strategy using the

BnB (Branch and Bound) optimization are compared with

one other through some simulation tests. Through the

comparison of the simulation results, the most adequate

task assignment strategies are proposed for some as

system requirements-: the optimization of system

utilization, the maximization of running tasks, and the

minimization of the number of network node nodes
number for a network system

B. Dynamic Scheduling Computation

In this module, the server collects and stores data received

from multi user and then it observes the data stored in

server and it checks the data and reordering that data based

on user mentioned file sending time.

Security requirements of security-critical real-time

applications must be met in addition to satisfying timing
constraints. However, conventional real-time scheduling

algorithms ignore the applications’ security requirements.

In recognition that an increasing number of applications

running on clusters demand both real-time performance

and security, we investigate the problem of scheduling a

set of independent real-time tasks with various security

requirements. Propose a security overhead model that is

capable of measuring security overheads incurred by

security-critical tasks. Further, we propose a security-

aware scheduling strategy, or SAREC, which integrates

security requirements into scheduling for real-time

applications by employing our security overhead model.
To evaluate the effectiveness of SAREC, we implement a

security-aware real-time scheduling algorithm (SAREC-

EDF), which incorporates the earliest deadline first (EDF)

scheduling algorithm into SAREC. Extensive simulation

experiments show that SAREC-EDF significantly

improves overall system performance over three baseline

scheduling algorithms (variations of EDF) by up to

72.55%. A strategy SAREC for security-aware scheduling

of real-time applications on clusters. This strategy is

capable for the design of security-aware real-time

scheduling algorithms like SAREC-EDF. To make
security-aware scheduling algorithms practical, we also

proposed a security overhead model to measure overheads

of security services.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5612

C. Execution Environment

Evaluate the ability of the scheduler to dynamically

manage heterogeneous pools of hardware. For these
experiments we use a heterogeneous cluster, consisting of

regular nodes and nodes enabled with acceleration

support, to evaluate the scheduler with hardware affinity.

To simulate an environment in which only some of the

nodes are enabled. The files are send to the enabled node

at the state of the time to assign in the modeling job

performance task.

A Trusted Execution Environment (TEE) is a secure area

that resides in the application processor of an A Trusted

Execution Environment (TEE) is a secure area that resides

in the application processor of an electronic device. To

help visualize, think of a TEE as somewhat like a bank

vault. A strong door protects the vault itself (hardware

isolation) and within the vault, safety deposit boxes with

individual locks and keys (software and cryptographic

isolation) provide further protection. Separated by

hardware from the main os, a TEE ensures the secure
storage and processing of sensitive data and trusted

applications. It protects the integrity and confidentiality of

key resources, such as the user interface and service

provider assets. A TEE manages and executes trusted

applications built in by device makers as well as trusted

applications installed as people demand them. Trusted

applications running in a TEE have access to the full

power of a device's main processor and memory, while

hardware isolation protects these from user installed apps

running in a main operating system. Software and

cryptographic isolation inside the TEE protect the trusted

applications contained within from each other.

Device and chip makers use TEEs to build platform that

have trust built in from the start, while service and content

providers rely on integral trust to start launching

innovative services and new business opportunities. To

help visualize, think of a TEE as somewhat like a bank

vault. A strong door protects the vault itself (hardware

isolation) and within the vault, safety deposit boxes with

individual locks and keys (software and cryptographic

isolation) provide further protection.

D. Dynamic Re-Scheduling

After completion of the scheduling the server rechecks the

storage whatever files to be send. The server dynamically

schedules a time for sending remaining file in the storage.

The server sends the re-scheduled files when the receiver

node comes to online mode. Our technique dynamically

adjusts the time of available execution nodes across jobs

so as to meet their complete a file sending process.

Today’s manufacturing businesses are facing immense

pressures to react rapidly and robustly to dynamic

fluctuations in demand distributions across products and

changing product mix. Traditional manufacturing systems

and approaches to production, involving sequential stages

from manufacturing systems design, construct, and setup

in the preparation phase to production planning,

scheduling, and control in the operational phase, can be
challenging in satisfying the requirement of the variation.

Efficient and practical methods for scheduling and

optimization technology are the key to improve the

productivity and efficiency of a manufacturing plant. The

dynamic interference of these factors causes that the
original dynamic scheduling cannot be implemented

successfully. Therefore, the rescheduling model and its

solution method are of significant importance for the

dynamic scheduling problem.

Dynamic rescheduling method is widely used in the

modern production plant. In this paper, the Contract Net

Protocol, which is based on MAS, is introduced to the

rescheduling of the workshop environment. It is a new
way of solving the communication and negotiation

problem in this field. After fully considering the effecting

of the equipment failure and repairmen in the process of

production, the complex dynamic rescheduling process is

to be divided into the communication and negotiation

processes of multi agents. Therefore, the capability of

autonomic decision for tackling the unexpected events,

which occur in the production, is extended. By simulation

in the actual production workshop, the model and

algorithm, which are based on MAS, were identified as

effective to the rescheduling problem in the manufacturing

system. It is worth pointing out that the test cases studied
in this work are not very many. It will explore the

efficiency of our model and approach on those problems

with a larger number of decision variables in the future.

IV. CONCLUSION

 Dynamic map-reduce technique presents, avoiding

overload in server at scheduling technique for multi-job

MapReduce environments, and demonstrate its allocation

method. The technique dynamically adjusts the allocation

of available execution slots across jobs so as to meet their

completion time goals, provided at submission time. The
system continuously monitors the average task length for

all jobs in all nodes, and uses this information to calculate

and adjust the expected completion time for all jobs.

Dynamic resource allocation algorithm using the main

server of un-received storage data forward to physical

node of related server. Finally, the unreachable storage

data delivered from related server to the particular

receiver. So, project reducing the total volume of network

traffic for a given workload.

REFERNCES
[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing

on large clusters,” in Proc. 2004 Symposium on Operating System

Design and Implementation, pp. 137–150.

[2] Y. Becerra, V. Beltran, D. Carrera, M. Gonzalez, J. Torres, and E.

Ayguade´, “Speeding up distributed MapReduce applications using

hardware accelerators,” in Proc. 2009 IEEE International

Conference on Parallel Processing, pp. 42–49.

[3] J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I. Whalley,

“Performance-driven task co-scheduling for MapReduce

environments,” in Proc. 2010 IEEE/IFIP Network Operations and

Management Symposium, pp. 373–380.

[4] J. Polo, D. Carrera, Y. Becerra, V. Beltran, J. Torres, and E.

Ayguade, “Performance management of accelerated MapReduce

workloads in heterogeneous clusters,” in Proc. 2010 International

Conference on Parallel Processing, pp. 653–662.

[5] Apache Software Foundation, Hadoop MapReduce Tutorial.

Available: http://hadoop.apache.org/mapreduce/

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5613

[6] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,

and I. Stoica, “Job scheduling for multi-user Map-Reduce clusters,”

Tech. Rep. UCB/EECS-2009-55, 2009.

[7] “Delay scheduling: a simple technique for achieving locality and

fairness in cluster scheduling,” in Proc. 2010 European Conference

on Computer Cystems, pp. 265–278.

[8] J. Polo, C. Castillo, D. Carrera, Y. Becerra, M. Steinder, I. Whalley,

J. Torres, and E. Ayguade´, “Resource-aware adaptive scheduling

for MapReduce clusters,” in 2011 ACM/IFIP/USENIX

International Mid- dleware Conference.

[9] J. Polo, “Adaptive Scheduler,” 2009. Available:

https://issues.apache.org/ jira/browse/MAPREDUCE-1380

[10] D. G. Feitelson and L. Rudolph, “Parallel job scheduling: issues

and approaches,” in JSSPP, 1995, pp. 1–18.

[11] P. R. Jelenkovic, X. Kang, and J. Tan, “Adaptive and scalable

comparison scheduling,” in 2007 SIGMETRICS.

[12] A. Wierman and M. Nuyens, “Scheduling despite inexact job-size

in- formation,” in Proc. 2008 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems,

pp. 25–36.

[13] Apache Hadoop on Demand. Available: {\scriptsizehttp://hadoop.

apache.org/core/docs/r0.20.0/hod\ user\ guide.html}

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

distributed data-parallel programs from sequential building blocks,”

in 2007 ACM SIGOPS/EuroSys European Conference on

Computer Systems 2007, pp. 59–72.

[15] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A.

Gold- berg, “Quincy: fair scheduling for distributed computing

clusters,” in 2009 ACM SOSP.

[16] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh,

K.- L. Wu, and A. Balmin, “FLEX: a slot allocation scheduling

optimizer for MapReduce workloads,” in Middleware 2010, vol.

6452, pp. 1–20.

[17] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: automatic

resource inference and allocation for MapReduce environments,”

2011 IEEE International Conference on Autonomic Computing.

[18] T. Sandholm and K. Lai, “MapReduce optimization using regulated

dynamic prioritization,” in Proc. 2009 International Joint

Conference on Measurement and Modeling of Computer Systems,

pp. 299–310.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,

“Improving MapReduce performance in heterogeneous

environments,” in Proc. 2008 USENIX Conference on Operating

Systems Design and Implementation, pp. 29–42.

[20] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,

B. Saha, and E. Harris, “Reining in the outliers in Map-Reduce

clusters using Mantri,” in Proc. 2010 USENIX Conference on

Operating Systems Design and Implementation, pp. 1-16

http://www.ijarcce.com/

	Fig4: System architecture
	A. Time Based Task Assignment
	C. Execution Environment
	D. Dynamic Re-Scheduling

