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Abstract: A scheduling algorithm and technique for managing multi-job Map Reduce workloads that relies on the 
ability to dynamically build performance models of the executing workloads, and uses these models to provide dynamic 

performance management using Adaptive scheduler. One of the design goals of the Map-Reduce framework is mainly 

based Adaptive scheduler to maximize data locality across working sets, in an attempt to reduce network bottlenecks 

and increase overall system throughput. Data locality is achieved when data is stored and processed on the same 

physical nodes. Sometime the server based executing workloads are not delivered to those particulars. Because, the 

multi-job network areas occurred some problem. So, the server storage is too high. In this paper, overcome this 

problem by the use of another server that is related to the main server. The problem of main server workload data 

executing to related server. Finally, the unreachable storage data delivered from related server to the particular receiver. 

So, every time free storage space and speed process in this server and also improve the server response time. 
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I. INTRODUCTION 
 

Cloud computing has dramatically transformed the way 

many critical services are delivered to customers for 

example, the Software, Platform, and Infrastructure as a 

Service paradigms, and at the same time has posed new 

challenges to data centers. The result is a complete new 

generation of large scale infrastructures, bringing an 
unprecedented level of workload and server consolidation, 

that demand new programming models, management 

techniques and hardware platforms. At the same time, it 

offers extraordinary capacities to the mainstream market, 

thus providing opportunities to build new services that 

require large scale computing. Therefore, data analytics is 

one of the more prominent fields that can benefit from 

next generation data center computing. The intersection 

between cloud computing and next generation data 

analytics services points towards a future in which 

massive amounts of data are available, and users will be 
able to process this data to create high value services. 

Consequently, building new models to develop such 

applications, and mechanisms to manage them, are open 

challenges. An example of a programming model 

especially well-suited for large-scale data analytics is 

MapReduce, introduced by Google in 2004. 
 

Map Reduce workloads usually involve a very large 

number of small computations executing in parallel. High 

levels of computation partitioning, and relatively small 

individual tasks, are a design point of Map Reduce 

platforms [1]. While it was originally used primarily for 

batch data processing, its use has been extended to shared, 

multi-user environments in which submitted jobs may 

have completely different priorities [6]. This change 
makes scheduling even more relevant. Task selection and 

slave node assignment govern a job’s opportunity to 

progress, and thus influence job performance. 
 

One of the design goals of the Map Reduce framework is 

to maximize data locality across working sets [3], in an  

 
 

attempt to reduce network bottlenecks and increase overall 

system throughput. Data locality is achieved when data is 

stored and processed on the same physical nodes [7]. 

Failure to exploit locality is one of the well-known 

shortcomings of most multi-job MapReduce schedulers, 

since placing tasks from different jobs on the same nodes 
will have a negative effect on data locality[4][5]. 
 

At the same time, there is a trend towards the adoption of 

heterogeneous hardware and hybrid systems in the 

computing industry. Heterogeneous hardware will be 

leveraged to improve both performance and energy 

consumption, exploiting the best features of each platform. 

For example, a Map reduce framework enabled to run on 

hybrid systems has the potential to have considerable 
impact on the future of many fields, including financial 

analysis, healthcare, and smart cities-style data 

management. MapReduce provides an easy and 

convenient way to develop massively distributed data 

analytics services that exploit all the computing power of 

these large-scale facilities. Huge clusters of hybrid many-

core servers will bring workload consolidation strategies 

one step closer in future data centers. 
 

 
 

Fig1: A Map Reduce computation 
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Fig1: A Map Reduce computation 

Scheduling algorithm and technique for managing multi-

job Map reduce workloads that relies on the ability to 
dynamically build performance models of the executing 

workloads, and uses these models to provide dynamic 

performance management [2]. At the same time, it 

observes the particulars of the execution environment of 

modern data analytics applications, such as hardware 

heterogeneity and distributed storage. Beyond the 

formulation of the problem and the description of the 

scheduling technique, a prototype has been implemented 

and tested on a medium-size cluster. The experiments 

study, separately, the scheduler’s ability to: meet high 

level performance goals guided by user-defined 
completion time goals;  
 

 favor data locality;  

 Deal with hardware heterogeneity. 
 

Introducing hardware affinity and relative performance 

characterization. Results presented in this paper are 

partially based on our previous work. In this paper 

integrate previous partial contributions to build a complete 

scheduling approach that faces the challenges of the 

management of data analytics applications executed on 

next generation data centers. And also extend previous 

work with our scheduling proposal to enhance data 

locality and the experiments to evaluate it. The main 

contribution of this work is to overcome the problem of 
data overload in the server. The server sends the sender 

data to the receiver if it is in online status, otherwise it has 

been stored in the server. Moreover the main server 

storage of un-received data is too high. So the Dynamic 

resource allocation algorithm using the main server of un-

received storage data forward to physical node of related 

server. Finally, the unreachable storage data delivered 

from related server to the particular receiver. So, every 

time free storage space and speed process in this server. 
 

II . RELATED WORK 

Process scheduling is a deeply explored topic for parallel 

applications, considering different type of applications, 

different scheduling goals and different platform 

architectures ([10]). There has also been some work 

focused on adaptive scalable schedulers based on job sizes 

([11], [12]), but in addition to some of these ideas, our 

proposed scheduler takes advantage of one of the key 
features of MapReduce: the fact that jobs are composed of 

a large number of similar tasks.  

 
Fig2: Definition of -SMART (Definition 1) and SMART 

 

MapReduce scheduling has been discussed in the 

literature, and different approaches have been presented. 

The initial scheduler provided by the Hadoop distribution 

uses a very simple FIFO policy, considering five different 

application priorities. In addition, in order to isolate the 

performance of different jobs, the Hadoop project is 

working on a system for provisioning dedicated Hadoop 
clusters to applications [13], but this approach can result in 

resource underutilization. There are several proposals of 

fair scheduling implementations to manage data-intensive 

and interactive applications executed on very large clusters 

for MapReduce environments ([6], [7]) and for Dryad 

([14], [15]).  

 
 

Fig 3: The Quincy flow-based scheduler graph. The figure 

shows a graph corresponding to the same set of jobs and 

tasks as the queue based scheduler in Figure 3. There are 

nodes in the graph for each root and worker task that the 

scheduler knows about, as well as an “unscheduled node” 

Uj for each job j. There is also a node Cm for each 

computer m, a “rack aggregator” node R l for each rack l, 
and a “cluster aggregator” node X. S is the sink node 

through which all flows drain from the graph. Each root 

task has a single outgoing edge to the computer where it is 

currently running. Each worker task in job j has an edge to 

j’s unscheduled node Uj, to the cluster-aggregator node X, 

and to every rack and computer in its preferred lists. 

Workers that are currently executing (shown shaded) also 

have an edge to the computer on which they are running. 

Graph edges have costs and capacities that are not shown 

in the figure. The Appendix has a detailed explanation of 

the structure of this graph and the costs and capacities that 

allow us to map a min-cost feasible flow to a fair 
scheduling assignment 
 

The main concern of these scheduling policies is to give 

equal shares to each user and achieve maximum utilization 

of the resources. However, scheduling decisions are not 

dynamically adapted based on job progress, so this 

approach isn’t appropriate for applications with different 
performance goals. There have been other proposals that 

applications. In addition to our initial implementation [3], 

others have shown interest in this particular topic. FLEX 

[16] is a scheduler proposed as an add-on to the Fair 

Scheduler to provide Service-Level- Agreement (SLA) 

guarantees. More recently [16] introduces a novel resource 

management framework that consists of a job profiler, a 

model for MapReduce jobs and a SLO-scheduler based on 

the Earliest Deadline First scheduling strategy. In [17], the 

authors introduce a system to manage and dynamically 
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assign the resources of a shared cluster to multiple Hadoop 

instances. Priorities are defined by users using high- level 

policies such as budgets. This system is designed for 
virtualized environments, unlike the proposed work, which 

is implemented as a regular Hadoop MapReduce scheduler 

and thus is able to run on standard Hadoop installations 

and provide more accurate estimations. Regarding the 

execution of MapReduce applications on heterogeneous 

hardware, in [18] the authors consider the influence that 

hardware heterogeneity may have on the scheduling of 

speculative tasks. Our proposal in orthogonal to this one as 

we do not face the scheduling of speculative tasks and we 

have not enable this option in the configuration of our 

execution environment. In [19] the authors focus on 
avoiding stragglers (which may cause the execution of 

speculative tasks). They show that most of them are due to 

network traffic. Thus, although dealing with stragglers is 

not the focus of our proposal, our scheduler is also 

avoiding them as the percentage of local task that it is able 

to achieve is around 100%. There are several works in the 

literature that consider the heterogeneity trend on current 

execution platforms. Studies the impact of heterogeneity 

on large clusters and presents techniques to include task 

placement constraints. More recently, Hadoop schedulers 

have focused on being more aware of both resources 

available in each node and resources required by 
applications. In [8] [9] we adapt the Adaptive Scheduler to 

be resource-aware. 
 

III.  PROPOSED METHOD 

The proposed system overcomes the problem of data 

overload in the server. The server sends the sender data to 

the receiver if it is in online status, otherwise it has been 

stored in the server. Moreover the main server storage of 

un-received data is too high. So the Dynamic resource 
allocation algorithm using the main server of un-received 

storage data forward to physical node of related server. 

Finally, the unreachable storage data delivered from 

related server to the particular receiver. So, every time free 

storage space and speed process in this server. 
 

 
Fig4:  System architecture 

 

A. Time Based Task Assignment 

A Map Reduce job has two different types of tasks, 

depending on the execution phase of the job: file tasks and 

arrival time tasks. In order to get suitable accuracy in the 

job performance estimation, estimate the performance for 

each job phase, file and attain time, separately. The task 

assignment is assigned by the abuser. The abuser sends the 

files to the other node. And also, the user sets the arrival 
time of the file which they want to be sent. In this task 

assignment the abuser state the receiver ID, files and the 

time to attain the recipient node. Study on task assignment 

strategies for a complex real-time network system is 

presented. Firstly, two task assignment strategies are 

proposed to improve previous strategies. The proposed 

strategies assign tasks with meeting end-to-end real-time 
constraints, and also with optimizing system utilization 

through period modulation of the tasks. Consequently, the 

strategies aim at the optimization to optimize of system 

performance with while still meeting real-time constraints. 

The proposed task assignment strategies are devised using 

the genetic algorithm switch heuristic real-time constraints 

in the generation of new populations. 
 

The strategies are differentiated by the optimization 

method of the two objectives-meeting end-to-end real-time 

constraints and optimizing system utilization: the first one 

has sequential genetic algorithm routines for the 
objectives, and the second one has one multiple objective 

genetic algorithm routine to find a Pareto solution. 

Secondly, the performances of the proposed strategies and 

a well-known existing task assignment strategy using the 

BnB (Branch and Bound) optimization are compared with 

one other through some simulation tests. Through the 

comparison of the simulation results, the most adequate 

task assignment strategies are proposed for some as 

system requirements-: the optimization of system 

utilization, the maximization of running tasks, and the 

minimization of the number of network node nodes 
number for a network system 
 

B.  Dynamic Scheduling Computation 

In this module, the server collects and stores data received 

from multi user and then it observes the data stored in 

server and it checks the data and reordering that data based 

on user mentioned file sending time. 
 

Security requirements of security-critical real-time 

applications must be met in addition to satisfying timing 
constraints. However, conventional real-time scheduling 

algorithms ignore the applications’ security requirements. 

In recognition that an increasing number of applications 

running on clusters demand both real-time performance 

and security, we investigate the problem of scheduling a 

set of independent real-time tasks with various security 

requirements. Propose a security overhead model that is 

capable of measuring security overheads incurred by 

security-critical tasks. Further, we propose a security-

aware scheduling strategy, or SAREC, which integrates 

security requirements into scheduling for real-time 

applications by employing our security overhead model. 
To evaluate the effectiveness of SAREC, we implement a 

security-aware real-time scheduling algorithm (SAREC-

EDF), which incorporates the earliest deadline first (EDF) 

scheduling algorithm into SAREC. Extensive simulation 

experiments show that SAREC-EDF significantly 

improves overall system performance over three baseline 

scheduling algorithms (variations of EDF) by up to 

72.55%. A strategy SAREC for security-aware scheduling 

of real-time applications on clusters. This strategy is 

capable for the design of security-aware real-time 

scheduling algorithms like SAREC-EDF. To make 
security-aware scheduling algorithms practical, we also 

proposed a security overhead model to measure overheads 

of security services. 
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C. Execution Environment  

Evaluate the ability of the scheduler to dynamically 

manage heterogeneous pools of hardware. For these 
experiments we use a heterogeneous cluster, consisting of 

regular nodes and nodes enabled with acceleration 

support, to evaluate the scheduler with hardware affinity. 

To simulate an environment in which only some of the 

nodes are enabled. The files are send to the enabled node 

at the state of the time to assign in the modeling job 

performance task.  
 

A Trusted Execution Environment (TEE) is a secure area 

that resides in the application processor of an A Trusted 

Execution Environment (TEE) is a secure area that resides 

in the application processor of an electronic device. To 

help visualize, think of a TEE as somewhat like a bank 

vault. A strong door protects the vault itself (hardware 

isolation) and within the vault, safety deposit boxes with 

individual locks and keys (software and cryptographic 

isolation) provide further protection. Separated by 

hardware from the main os, a TEE ensures the secure 
storage and processing of sensitive data and trusted 

applications. It protects the integrity and confidentiality of 

key resources, such as the user interface and service 

provider assets. A TEE manages and executes trusted 

applications built in by device makers as well as trusted 

applications installed as people demand them. Trusted 

applications running in a TEE have access to the full 

power of a device's main processor and memory, while 

hardware isolation protects these from user installed apps 

running in a main operating system. Software and 

cryptographic isolation inside the TEE protect the trusted 

applications contained within from each other. 
 

Device and chip makers use TEEs to build platform that 

have trust built in from the start, while service and content 

providers rely on integral trust to start launching 

innovative services and new business opportunities. To 

help visualize, think of a TEE as somewhat like a bank 

vault. A strong door protects the vault itself (hardware 

isolation) and within the vault, safety deposit boxes with 

individual locks and keys (software and cryptographic 

isolation) provide further protection. 
 

D. Dynamic Re-Scheduling 

After completion of the scheduling the server rechecks the 

storage whatever files to be send. The server dynamically 

schedules a time for sending remaining file in the storage. 

The server sends the re-scheduled files when the receiver 

node comes to online mode. Our technique dynamically 

adjusts the time of available execution nodes across jobs 

so as to meet their complete a file sending process. 
 

Today’s manufacturing businesses are facing immense 

pressures to react rapidly and robustly to dynamic 

fluctuations in demand distributions across products and 

changing product mix. Traditional manufacturing systems 

and approaches to production, involving sequential stages 

from manufacturing systems design, construct, and setup 

in the preparation phase to production planning, 

scheduling, and control in the operational phase, can be 
challenging in satisfying the requirement of the variation. 

Efficient and practical methods for scheduling and 

optimization technology are the key to improve the 

productivity and efficiency of a manufacturing plant. The 

dynamic interference of these factors causes that the 
original dynamic scheduling cannot be implemented 

successfully. Therefore, the rescheduling model and its 

solution method are of significant importance for the 

dynamic scheduling problem.  
 

Dynamic rescheduling method is widely used in the 

modern production plant. In this paper, the Contract Net 

Protocol, which is based on MAS, is introduced to the 

rescheduling of the workshop environment. It is a new 
way of solving the communication and negotiation 

problem in this field. After fully considering the effecting 

of the equipment failure and repairmen in the process of 

production, the complex dynamic rescheduling process is 

to be divided into the communication and negotiation 

processes of multi agents. Therefore, the capability of 

autonomic decision for tackling the unexpected events, 

which occur in the production, is extended. By simulation 

in the actual production workshop, the model and 

algorithm, which are based on MAS, were identified as 

effective to the rescheduling problem in the manufacturing 

system. It is worth pointing out that the test cases studied 
in this work are not very many. It will explore the 

efficiency of our model and approach on those problems 

with a larger number of decision variables in the future.  

 

IV.  CONCLUSION 

 Dynamic map-reduce technique presents, avoiding 

overload in server at scheduling technique for multi-job 

MapReduce environments, and demonstrate its allocation 

method. The technique dynamically adjusts the allocation 

of available execution slots across jobs so as to meet their 

completion time goals, provided at submission time. The 
system continuously monitors the average task length for 

all jobs in all nodes, and uses this information to calculate 

and adjust the expected completion time for all jobs. 

Dynamic resource allocation algorithm using the main 

server of un-received storage data forward to physical 

node of related server. Finally, the unreachable storage 

data delivered from related server to the particular 

receiver. So, project reducing the total volume of network 

traffic for a given workload. 
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