
ISSN (Online) : 2278-1021 

ISSN (Print)    : 2319-5940 
  International Journal of Advanced Research in Computer and Communication Engineering  

 Vol. 3, Issue 2, February 2014 
 

Copyright to IJARCCE                                                                           www.ijarcce.com                             5658 

DIMENSIONALITY REDUCTION USING 

BAYESIAN LEARNING PREDICTIVE 

SUBSPACES FOR SUPERVISED AND SEMI- 

SUPERVISED MULTI-LABEL LEARNING 
 

T.Seeniselvi
1
, M.Manjula

2
, R.Deepa

3 

Associate Professor, PG & Research Department of Computer Science, Hindusthan College of Arts & Science, 

Coimbatore, India 1 

Research Scholar, PG & Research Department of Computer Science, Hindusthan College of Arts & Science, 

Coimbatore, India 2,3 

Abstract: For supervised learning problems, dimensionality reduction is generally applied as a pre-processing step. 

However, Coupled training of dimensionality reduction and classification is proposed previously to improve the 

prediction performance for single-label problems. In this paper, we first introduce a novel Bayesian method that 
combines linear dimensionality reduction with linear binary classification for supervised multi-label learning and 

present a deterministic variational approximation algorithm to learn the proposed probabilistic model. The proposed 

method is to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to 

handle semi-supervised learning using a low-density assumption. Our proposed method significantly outperforms 

combined Bayesian with multiple kernel Fisher discriminate analysis followed by a standard kernel-based learner, 

especially on low dimensions. 
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I.  INTRODUCTION 
 

Dimensionality reduction algorithms try to find low 

dimensional representations of the input data for three 

main goals: 1) removing the inherent noise to improve the 

prediction performance, 2) obtaining 2D or 3D 

visualizations to do exploratory data analysis, and 3) 

reducing space and time complexities for testing phase. 
Principal component analysis (PCA) is the most basic 

dimensionality reduction algorithm; it performs a linear 

projection on the input data [1]. PCA basically tries to 

maximize the explained variance of the input data in the 

projected subspace. The projection matrix is found by 

computing the eigenvalue decomposition of the data 

covariance matrix. It generally performs badly for 

classificationproblems due to its linear and unsupervised 

nature. Kernel principal component analysis (KPCA) is an 

extension of PCA obtained by introducing nonlinearity 

using kernel functions [2]. 
 

Fisher discriminant analysis (FDA) is another well-known 

linear dimensionality reduction algorithm [3]. FDA tries 

simultaneously to minimize the within-class variance and 

to maximize the between-class variance. The main 

limitation of FDA is that the dimensionality of the 

projected subspace can be at most K 1 where K is the 

number of classes. Kernel Fisher discriminant analysis 

(KFDA) is a nonlinear extension of FDA formulated using 

kernel functions [4]. For supervised learning problems, 

dimensionality reduction and prediction steps are 
generally performed separately in a serial manner.  

 

 
 

Supervised dimensionality reduction algorithms use output 

values (e.g., labels) to find a better subspace for the   

prediction step but they generally have their own target 

functions different from the one that the learner trained on 

the projected subspace uses, leading to low prediction 

performance. Hence, coupled training of these two steps 
may improve the overall system performance. 

 

II.  RELATED WORK 
 

A.Coupled training model 
 

Coupled training of dimensionality reduction and 

classification has been studied previously. For example, 

Globerson and Roweis [5] and Weinberger and Saul [6] 

try to learn a Mahalanobis distance metric while 

considering the nearest neighbour classification 

performance. More similar to our approach, Pereira and 

Gordon [7] propose to optimize the projection matrix and 

the parameters of a linear classifier with an alternating 

optimization method but the objective function has an 

additional regularization term for reconstruction error. Ji 

and Ye [8] follow the same idea of joint learning of 
dimensionality reduction and classification parameters for 

multi-label learning. 

 

B.MKL 

Recently, dimensionality reduction algorithms that use 

MKL in the inner loop to combine different kernels are 

proposed. Liang and Li [9] give an alternating 

optimizationmethod for generalized discriminant analysis 
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with multiple kernels. At each iteration, two different 

eigenvalue decompositions are calculated for updating the 

projectionmatrix and the kernel weights separately. Lin et 

al. [10] extend the graph embedding framework of [11], 

which is a unified framework for different dimensionality 

reductionalgorithms, by introducing multiple kernels. 

Different supervised (e.g., FDA), unsupervised (e.g., 

locality preserving projections [12]), and semi-supervised 
(e.g., semi-superviseddiscriminant analysis [13]) 

dimensionality reduction algorithms can be modified to 

include MKL. Similarly, Hou et al. [14] give a unified 

framework for local dimensionality reduction methods 

using kernel matrices and it can also be extended to MKL 

setup.  
 

In theseapproaches, classification has to be performed 

after dimensionality reduction and there is no guarantee 

that the projected subspace will be predictive. 
 

When thedifferent feature representations and/or similarity 

measures, it may be a good idea to use a weighted 
combination of those for dimensionality reduction 

inspiredby MKL algorithms that are generally formulated 

for supervised learning setups. In dimensionality reduction 

coupled with MKL, we definitely need to optimize 

thekernel combination parameters to obtain the most 

predictive subspace. The target function of the prediction 

step should also be combined with MKL and 

dimensionalityreduction to improve the prediction 

performance. 

 

III.  PROPOSED SYSTEM 
 

The proposed method is to find intrinsic dimensionality of 

the projected subspace using automatic relevance 

determination and to handle semi-supervised learning 

using a low-density assumption. Our proposed method 

significantly outperforms combined Bayesian with 
multiple kernel Fisher discriminate analysis followed by a 

standard kernel-based learner, especially on low 

dimensions. A novel supervised and semi-supervised 

multi-label learning method where the linear projection 

matrix and the binary classification parameters are learned 

together tomaximize the prediction performance in the 

projected subspace. 
 

A.Coupled dimensionality reduction and classification 

To Performing the dimensionality reduction and 

classification successively (with two different objective 

functions) may not result in a predictive subspace and may 

have low generalization performance. In order to find a 

better subspace, coupling dimensionalityreduction and 

single-output supervised learning. To consider the 

predictive performance of the target subspace while 

learning the projection matrix.  

 
In order to benefitfrom the correlation between the class 

labels in a multi-label learning scenario, we assume a 

common subspace and perform classification for all labels 

in that subspace using different classifiers for each label 

separately. The predictive quality of the subspace 

nowdepends on the prediction performances for multiple 

labels instead of a single one. 

 
Fig: 1. Coupled dimensionality reduction 

 

Fig. 1 illustrates the probabilistic model for multi-label 

binary classification with a graphical model and its 
distributional assumptions. The data matrix X is used to 

project data points into a lowdimensional space using the 

projection matrix Q. The low-dimensionalrepresentations 

of data points Z and the classification parameters fb;Wg 

are used to calculate the classification scores. Finally, the 

given class labels Y are generated from the auxiliary 

matrix T, which is introduced to make the inference 

proceduresefficient. We formulate a variational 

approximation procedure for inference in order to have a 

computationally efficient algorithm. 

 

B.Inference variational approximation method 
The variational methods use a lower bound on the 

marginal likelihood using an ensemble of factored 

posteriors to find the joint parameter distribution. 

Assuming independence between the approximate 

posteriors in the factorable ensemble canbe justified 

because there is not a strong coupling between our model 

parameters. We can write the factorable ensemble 

approximation of the required posterior as 
 

 

 
 

To choose a model projected data instances explicitly (i.e., 

not marginalizing out them) and independently (i.e., 

assuming a distribution independent of other variables) in 

the factorable ensemble approximation in order to 

decouple the dimensionality reductionand classification 

parts. By doing this, we achieve to obtain update equations 
for Q and fb;Wg independent of each other. 

 

C.Bayesian Multi-label Learning Algorithm 

The complete Bayesian Multi-label Learning Algorithm 

inference algorithm is listed in Algorithm 1. The inference 

mechanism sequentially updates the approximate posterior 

distributions of the model parameters and the latent 

variables until convergence, which can be checked by 

monitoring the lower bound in (1). Exact form of the 

variational lower bound can be found in Section II B. The 

first term of the lower bound corresponds to the sum of 
exponential forms of the distributions inthe joint 

likelihood.  
 

The second term is the sum of negative entropies of the 

approximate posteriors in the ensemble. The only 

nonstandard distribution in the second term is the 

truncated normal distributions of the auxiliary variables; 
nevertheless, the truncatednormal distribution has a 

closed-form formula also for its entropy. 
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Algorithm1: Bayesian Multi-label Learning 

 

Require: X,Y,R,αλ,βλ,αΦ,βΦ,αΨ and βΨ 

1: Initialize q(Q), q(Z), q(b, W), and q(T) randomly 

2: repeat 

3: Update q(Φ) and q(Q) 

4: Update q(Z) using (1) 

5: Update q(λ), q(Ψ), and q(b, W) using (1) 
6: Update q(T) 

7: until convergence 

8: return q(Q) and q(b, W) 

 

D.semi-supervised multi-label learning 

Labelling large data collections may not be possible due to 

extensive labour required. In such cases, we should 

efficiently use a large number of unlabeled data points in 

addition to a few labelled data points (i.e., semi-supervised 

learning). Semi-supervisedlearning is not well-studied in 

the context of multi-label learning. There are a few 

attempts that formulate the problem as a matrix 
factorization problem.The only consider dimensionality 

reduction and classification together for multi-label 

learning in a semi-supervised setup.We modify our 

probabilistic model described above for semi-supervised 

learning assuming a low-density region between the 

classes. We basically need to make the class labels 

partially observed and to introduce a new set of 

observedauxiliary variables denoted by L. The 

distributional assumptions for Y and L are defined as 

follows: 
 

 
 

The first distributional assumption has two main 

implications: (i) Alow-density region is placed between 

the classes similar to the margin in support vector 

machines. (ii) Unlabeled data points are forced to be 

outside of this low-density region. 
 

IV.  EXPERIMENTAL RESULTS 
We test our proposed Bayesian Multi-label Learning 

Algorithm on one digit recognition and two bioinformatics 

data sets by comparing it with a baseline algorithm 

discussed in previous studies[16], [17]. BMLA is our 

proposedalgorithm that combines MKL, dimensionality 

reduction, and supervised learning into a joint 

optimization problem, outlined in Algorithm 1. 

 

We implement these algorithms in MATLAB1 and solve 
SVM problems with LIBSVM software [22]. In the 

experiments, we use the one-versus-all decomposition 

strategy and select the regularization parameter C of SVM 

problemsfrom f1; 10; 100; 1,000g using cross-validation. 

To perform experiments on the two proteins sub-cellular 

localization data sets PLANT and PSORT+3 from [23]. 

Table 1 lists the average accuracies with their standard 

deviations obtained by MKFDA+SVM, SMKE and 

BMLA on the PLANT and PSORT+ data sets. We see that 

BMLA is better than SMKE,MKFDA+SVM on both data 

sets. 

Table 1: The Average Test Accuracies with Their 

Standard Deviations on the PLANT and PSORT+ Data 

Sets 

Algorithm  Plant  Psort + 

MFDA+SVM 73.42 79.86 

SMKE 81.71 82.64 

BMLA 89.97 90.65 

 

 
 

Table 2 provides the running times of the two algorithms 

with their standard deviations on the PLANT and 
PSORT+ data sets. Different from the results on the 

MULTIFEAT dataset, we see that BMLA is significantly 

faster than SMKE when there are a large number of 

kernels (69 in our experiments). 

 

Table 2: The Average Training Times with Their Standard 

Deviations on the PLANT and PSORT+ Data Sets 

Algorithm  Plant  Psort + 

MFDA+SVM 7.0 4.69 

SMKE 1.30 0.64 

BMLA 1.22 0.54 

 

 
 

VI.  CONCLUSION 

In this paper, the Bayesian supervised multi-label learning 

method that couples linear dimensionality reduction and 

linear binary classification. We then provide detailed 

derivations for supervised learning using a deterministic 

variational approximation approach.To formulate two 

variants: (i) an automatic relevance determination variant 

to find intrinsic dimensionality of the projected subspace 
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and (ii) a semi-supervised learning variant with a low-

density region between the classes to make use of 

unlabeled data. 

 

The proposed models can be extended in different 

directions: First, we can use a nonlinear dimensionality 

reduction step before multi-label classification step using 

kernels instead of data matrix. Second, we can use a 
nonlinear classification algorithm such asGaussian 

processes instead of probit model in our formulation to 

increase the prediction performance. Lastly, we can learn a 

unified subspace for multiple input representations (i.e., 

multitask learning) by exploiting the correlations between 

different tasks definedon different input features. 
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