
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5237

Profiling and Benchmarking of Openstack Swift

Object Storage

Neelam Patil
1
, Shubhada Walekar

2
, Trupti Mane

3
, Prof. A.S.Shitole

4

Sinhgad Academy of Engineering, Pune

Abstract: Openstack object storage system (swift) being increasingly recognized as preferred way to expose one‟s

storage infrastructure as a service. Openstack object storage is a scalable redundant storage system. Objects and files

are written to multiple disk drives spread throughout servers in the data center, with the OpenStack software

responsible for ensuring data replication and integrity across the cluster. As Swift is extremely dynamic and flexible, it

needs to be tested under various load scenarios to monitor its performance. It is very challenging to evaluate its

performance under various workloads. To address this problem we are building up a solution which benchmark the

object store with different load characteristics and provide us with detailed statistics.

Index Terms: Openstack, Swift, Benchmark Tool, Workload, Proxy server, Master, Worker, Throughput, Latency,

Success ratio.

I. INTRODUCTION

A. OpenStack as IaaS

OpenStack is a collection of open source components to

deliver public and private cloud. It is an IaaS cloud. Users

of IaaS clouds can provision “processing, storage, network

and other fundamental resources” on demand that is when

needed, as long as needed, and paying only for what is

actually consumed. The OpenStack components currently

include OpenStack Compute (called Nova), OpenStack

object storage (called Swift) and OpenStack image service

(called Glance). OpenStack is a new effort and has

received considerable momentum due to its openness and

support of companies.

B. OpenStack Swift

Swift is a highly scalable cloud storage solution of

Openstack. Swift is used to create scalable, redundant

object storage using clusters of standardized servers in

order to store petabytes of accessible data. Swift is suitable

for archival storage purpose where static data can be

uploaded for long

time storage, retrieved for analysis or writing over with

new data. It is not a file system or real time data storage

system.

The APIs are written in Python programming language

and is deployable on servers that are running on any Linux

OS. The Swift API can be installed standalone. The public

API for Swift is exposed through a proxy server. The

proxy server is responsible for finding the location of an

account, container or object in the „ring‟ and route the

request accordingly. The ring represents the mapping

between the names of entities stored on the disk and their

physical location. There are three types of rings called

account, object and container to perform each zones kind

of operation. Ring maintains a mapping of zones, devices,

partitions and replicas. Each replica that is usually up to 3

copies is guaranteed to reside in different zones. A zone

can be a drive, server, cabinet or data center. The object

server is responsible for facilitating the storage and

retrieval of data files. Last write always wins when

multiple put operations are performed on the same object

and upon deletion all replicated copies are removed as

well. Swift runs a container server whose primary object is

to handle the listing of objects. Containers are similar to

directory names or file folders. The listings are stored in

the SqLite database. The account server is responsible for

listing of containers.

The Swift architecture uses a replication process ensuring

the data is protected in the event of disk failure and the

network outages. It also make sure that all copies are up to

date to the latest version and the deleted data is removed

from all the replicated locations. There is an updater

process which will take care of updating the data in a

queue during periods of high load. Auditors check for the

integrity of objects, containers and accounts and corrupted

files. They will be quarantined and replaced from another

replica.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5238

C. Need of benchmarking

We review in this section the main reasons for

benchmarking. Benchmarking computer systems is the

process of evaluating their performance and other non-

functional characteristics with the purpose of comparing

them with other systems or with industry-agreed

standards. Traditionally, the main use of benchmarking

has been to facilitate the informed procurement of

computer systems through the publication of verifiable

results by system vendors and third-parties. However,

benchmarking has grown as a support process for several

other situations. We view benchmarking as an empirical

evaluation of performance that follows a set of accepted

procedures and best-practices. We see a role for

(statistical) simulation and mathematical analysis when the

behavior of the system is well -understood and for long-

running evaluations that would be impractical otherwise.

Thus simulating new technology, such as cloud

computing, requires careful (and time-consuming)

validation of assumptions and models. Benchmarks,

through their open-source nature and representation of

industry accepted standards, can represent best-practices

and thus be valuable training material.

II. DESIGN ARCHITECTURE OF IAAS SWIFT

BENCH

We propose in this section a generic architecture for IaaS

cloud benchmarking for OpenStack Swift. Our

architecture focuses on conducting benchmarks as sets of

(real-world) experiments that lead to results with high

statistical confidence, on considering and evaluating Swift

as evolving black-box systems, on employing complex

workloads that represent multi-tenancy scenarios, on

domain-specific scenarios, and on a combination of

traditional and cloud-specific metrics.

In the architecture, the process begins with the user (e.g., a

prospective IaaS cloud user) defining the benchmark

configuration, that is, the complex workloads that

definethe user‟s preferred scenario (component 1). The

benchmarking system converts (component 2) the scenario

into a set of workload descriptions, one per (repeated)

execution. The workload may be defined before the

benchmarking process, or change (in particular, increase)

during the benchmarking process. After the preparation of

the workload, the SUT (System Under Test) (component

3) is subjected to the workload through the job and

resource management services provided by the testing

system (component 4, which includes components 5–10).

In the benchmarking architecture, the SUT can be

comprised of one or several self-owned infrastructures,

and public and private IaaS clouds. Here it is an

OpenStack object storage Swift as SUT. The SUT

provides resources for the execution of the workload;

these resources are grouped into a Virtual Resource Pool.

The results produced during the operation of the system

may be used to provide a feedback loop from the Virtual

Resource Pool back into the Workload Generator and

Submitter (component 5); thus, the architecture can

implement open and closed feedback loops. As a last

important sequence of process steps, per-experiment

results are combined into higher-level aggregates, first

aggregates per workload execution (component 11), then

aggregates per benchmark (component 12). We also

envision the creation of a general database of results

collected by the entire community and shared freely. The

architecture supports various policies for provisioning and

allocation of resources (components 6 and 7, respectively).

The generic cloud benchmarking architecture also includes

support for evolving black-box systems (components 9,

11, and 12), complex workloads and multi-tenancy

scenarios (components 1, 2, and 5), domain-specific

components (component 10), etc.

ARCHITECTURE OF IAAS SWIFT BENCH

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5239

III. OPEN CHALLENGES IN SWIFT IaaS

CLOUD BENCHMARKING

We introduce in this section an open list of surmountable

challenges in swift IaaS cloud benchmarking.

A. Methodological

Challenge 1. Experiment compression: Long setup

times, for example of over a day, and/or long periods of

continuous evaluation, for example of more than a day per

result, reduce the usefulness of a benchmark for the

general user. This is a general problem with any

experimental approach, but for swift IaaS clouds it has the

added disadvantage of greatly and visibly increasing the

cost of benchmarking. Rsearch is needed to reduce the

setup and operational time of benchmarks for IaaS clouds.

This can be achieved through reduced input and

application. Reduced benchmark input and application sets

can be obtained by refining input workloads from real

complex workloads, using theoretically sound methods

(e.g., statistical models and goodness-of-fit tests). Such

reduced benchmark inputs will contrast with traditional

synthetic benchmarks, which incorporate many human-

friendly parameter values (e.g., “10% queries of type A,

90% queries of type B”) and thus may lack theoretical

guarantees for representativeness.

B. System Properties

Challenge 2. Massive scale, multi-site benchmarking:

One of the main product features of IaaS clouds is the

promise of seemingly infinite capacity. Hence

benchmarking this promise is difficult, very time-

consuming, and very costly. Testing tools can be built to

test infrastructures of thousands of cores, but performance

evaluation tools that work at much larger scale in

heterogeneous IaaS clouds have yet to be proven in

practice. An important challenge here may be the ability to

generate massive-scale workloads. Other cloud

deployment models require the use of multiple sites, for

reliability and vendor lock-in avoidance. We expect multi-

site cloud use to increase, as more companies, with or

without existing computational capacity, try out or even

decide to use cloud services.[6] We argue that

benchmarking across multiple sites raises additional

challenges, not in the least the combined availability for

testing and scalability of the infrastructure, and the

increased cost.

Challenge 3. Performance isolation: The negative effects

of the interaction between running jobs in a complex

workload have been observed in distributed environments

since at least the mid-1990s [6]. Following early work we

argue that quantifying the level of isolation provided by an

IaaS cloud is a new and important challenge.

Moreover, as IaaS clouds become more international, their

ability to isolate performance may suffer most during

periods of peak activity. Thus, studying the time patterns

of performance isolation is worthwhile.

C. Workload

Challenge 4. Statistical models of workloads or of

system performance:

Statistical workload modeling is the general technique of

producing synthetic models from workload traces

collected from real-world systems that are statistically

similar to the real-world traces. We argue that building

such statistical models raises important challenges, from

data collection to trace processing, from finding good

models to testing the validity of the models. We also see

as an open challenge the derivation of statistical

performance models, perhaps through linear regression,

from already existing measurements. We envision that

IaaS clouds will also be built for specific, even niche

application domains, charging premium rates for the

expertise required to run specific classes of applications.

Toward building domain-specific benchmarks, we argue

for building statistical models of domain-specific or at

least programming model-specific workloads. We have

conducted in the past extensive research in grid workloads.

III. PERFORMANCE

Performance is the primary measure by which swift

measures capacity of cluster. This performance evaluation

is carried out using following workloads:

A. Read Benchmark:

This simple test measures the raw ability of swift to handle

thousands of reads . We test swift with files of varying

sizes:

1 KB 10 MB

 10 KB 100 MB

 100 KB 1 GB

 1 MB

B. Write Benchmark:

This simple test measures the raw ability of swift to handle

thousands of write. We test swift with files of varying

sizes:

1 KB 10 MB

 10 KB 100 MB

 100 KB 1 GB

 1 MB

C. Read-Write Benchmark:

This test measures the raw ability of swift to handle

thousands of read-write combinations. While giving

combinations we can change percentage ratios of read

write. For example 50% read 50% write or 40% read 60 %

write and so on.

D. Create-Update-Delete Benchmark:

This test involves either combination or individual test for

create-update-delete profiles. This test helps to analyze

what how number of updates-deletes affect the

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5240

performance of swift under certain load. What is success

ratio, throughput, latency are measured accurately in this

benchmark test.

Benchmarking Parameters:

 To record First byte latency:

 Min, Max, Avg

 Min= Minimum Time Required for first

response byte to arrive

 Max= Maximum Time Required for first

response byte to arrive

 Avg= Average Latency

 To record Last byte latency:

 Min, Max, Avg

 Min= Minimum Time Required for last

response byte to arrive

 Max= Maximum Time Required for last

response byte to arrive

 Avg= Average Latency

 Throughput:

- No. of operations per unit time

 Average Request per second

 Total number of processed request for each type

of request

 Success ratio:

- The Ratio of successful operations

𝑁𝑜. 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑟𝑣𝑒𝑑

𝑁𝑜. 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
∗ 100

IV. ACKNOWLEDGMENT

We express our special thanks and heartily gratitude to the

Head of Department, Prof. B. B. Gite and our respected

staff members for inspiring us throughout the completion

of our project report.

We express our special thanks and heartily gratitude to

Mr. Sameer Mainkar from Persistent System Pune, for

providing us with his valuable inputs throughout the

project report.

The acknowledgement would be incomplete if we don‟t

record our sense of gratitude to our principal, Dr. A.G.

Kharat who gave us the necessary guidance,

encouragement, by providing us with all the facilities

available to work on this project.

V. CONCLUSION

The importance of IaaS cloud benchmarking has grown

proportionally to the increased adoption of this

technology, from small and medium businesses to

scientific users. We propose a generic approach for IaaS

cloud swift benchmarking, in which resource and job

management can be provided by the testing infrastructure,

there is support for black-box systems that change rapidly

and can evolve over time, where tests are conducted with

complex workloads, and where various multi-tenancy

scenarios can be investigated. We also discuss four

variouschallenges in developing this approach:

methodological, system property-related, workload

related.

REFERENCES

[1]. grids.ucs.indiana.edu/ptliupages/laszewski-IEEECloud2012_id-

4803.pdf

[2]. www.ucgrid.org/technical_reports/storage-paper.pdf

[3]. www.openstack.org/software/openstack-storage/
[4]. swift.openstack.org/

[5]. docs.openstack.org/developer/swift/development_saio

[6] Alexandru Iosup, Radu Prodan, and Dick Epema on IaaS cloud
Benchmarking

	PointTmp

