
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5680

Implementation Of FPGA Based 32 Bit CISC

CPU Design

SARASWTHI P
 1
, M K CHANDRASEN

 2

M.Tech (Student), Department of ECE, Avanthi Institute of Engineering & Tech, Visakhapatnam, India 1

Assistant Prof, Department of ECE, Avanthi Institute of Engineering & Tech, Visakhapatnam, India 2

Abstract: Complex Instruction Set Computer (CISC) processors are primarily used in work stations and personal

computers. CISC processors with integrated graphics and display systems can be used in car navigation systems, driver

information systems etc. It is also applicable in high speed data transmission and real time controlling applications.

Taking into consideration all these advantages and applications of CISC processor this work is adopted to design an 8

bit CISC CPU using FPGA.

Keywords: FPGA, CISC, CPU

I. INTRODUCTION
Very-large-scale integration (VLSI) is the process of

creating integrated circuits by combining thousands of

transistor-based circuits into a single chip. VLSI began in

the 1970s when complex semiconductor and

communication technologies were being developed. The

microprocessor is a VLSI device. The term is no longer as

common as it once was, as chips have increased in

complexity into the hundreds of millions of transistors. As

of early 2008, billion-transistor processors are

commercially available, an example of which is Intel's

Montecito Itanium chip.

This is expected to become more commonplace as

semiconductor fabrication moves from the current

generation of 65 nm processes to the next 45 nm

generations (while experiencing new challenges such as

increased variation across process corners). Another

notable example is NVIDIA’s 280 series GPU. While we

will concentrate on integrated circuits, the properties of
integrated circuits-what we can and cannot efficiently put

in an integrated circuit-largely determine the architecture

of the entire system. Integrated circuits improve system

characteristics in several critical ways.

Electronic systems now perform a wide variety of tasks in

daily life. Electronic systems in some cases have replaced

mechanisms that operated mechanically, hydraulically, or

by other means; electronics are usually smaller, more

flexible, and easier to service. In other cases electronic
systems have created totally new applications.

II. VHDL

VHDL is an acronym for Very High Speed Integrated
Circuits Hardware description Language. The language

can be used to model a digital system at many levels of

abstraction ranging from the algorithmic level to the gate

level. The complexity of the digital system being modeled

could vary from that of a simple gate to a complete digital

electronic system.

The VHDL language can be regarded as an integrated

amalgamation of sequential, concurrent, net list and

waveform generation languages and timing specifications.

To meet this challenge, teams of engineers from three

companies - IBM, Texas Instruments and Intermetrics —

were contracted by the department of defense to complete

the specification and implementation of a new language

based design description method. The first publicly

available version of VHDL, version 7.2 was released in

1985. In 1986, the IEEE was presented with a proposal to

standardize the language, which it did in 1987 and

academic representatives. The resulting standard, IEEE

1076—1987 is the basis for virtually every simulation and

synthesis product sold today. An enhanced and updated

version of the language, IEEE 1076-1993, was released in
1994, and VHDL tool vendors have been responding by

adding these new language features to their products.

To get around the problem of non-standard data types, an

IEEE committee adopted another standard. This standard

numbered 1164, defines a standard package (a VHDL

feature that allows commonly used declaration to be
collected into an external library) containing definition for

a standard nine-value data type. This standard data type is

called standard logic, and the IELL 1164 package is often

referred to as the standard logic package.

The IEEN 1076-1987 and IEEE 1164 standards together

form the complete VHDL standard in widest use today

(IEEE 1076-1993 is slowly working its way into the

VHDL mainstream, but it does not add significant number

of features for synthesis users).

In the search for a standard design and documentation tool

for the Very High Speed Integrated Circuits (VHSIC)

program the United States Department of Defense (DOD)

in the summer of 1981 sponsored a workshop on HDLs at

Woods Hole, Massachusetts.

The conclusion of the workshop was the need for a

standard language, and the features that might be required

by such a standard in 1983.DoD established requirements

for a standard VHSIC hardware description

language(VHDL), based on the recommendation of the
“Woods Hole” workshop. A contract for the development

of the VHDL language, its environment, and its software

was awarded to IBM, Texas instruments and Intermetrics.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5681

VHDL 2.0 was released only six months after the project

began. The language was significantly improved hereafter

and other shortcomings were corrected leading to the

release of VHDL 6.0. In 1985 this significant
developments led to the release of VHDL 6.0. In 1985

these significant development led to the release of VHDL

7.2 language reference manual. This was later on

developed as IEEE 1076/A VHDL language reference

manual.

III. CISC ARCHITECTURE

Since the development of the stored-program computer,

there has been remarkably few true innovations in the

areas of computer organization and architecture. In this

list, one of the most interesting and potentially one of the

most important innovations is Complex Instruction Set

Computer (CISC) architecture. The CISC architecture is a

dramatic departure from the historical trend in CPU

architecture and challenges the conventional wisdom

expressed in words and deeds by most computer
architects. The aim of the project is to:

 Design the architecture of simple 32- Bit CISC

processor .

 Implementation of individual modules of the CISC

processor using VHDL .

 Integration of individual modules.

 Their Simulation and Synthesis.

A CISC system offers a large menu of features which

implies a larger and more complicated decoding

subsystem and complex logic which is not in the case of

CISC processors. One of the ways to increase the speed

of execution on any computer is to implement pipelining

which is difficult to implement in CISC systems. But in

CISC processors pipelining can be efficiently

implemented.

Due to this opposition to the traditional CISC design, in

early eighties there emerged a new trend of computer

design, i.e CISC, which became popular thereafter.
Several advantages of CISC processors are:

 VLSI realization

 Increase in computing speed

 Less time to complete the design

 Reduction in overall design cost

 High Level Language (HLL) support

IV. FLOW CHART OF VARIOUS BLOCKS

IMPLEMENTATION

The ALU performs both arithmetic and logical operations
and as well as control of transfer instructions. It takes data

and acc as inputs to generate output according to the

opcode. An execlk is given as input for synchronization

and the output is available at positive edge of the execlk.

It performs arithmetic and logic instructions directly and

control of transfer instructions are performed with the help

of control and logic decoder. The block diagram is as

mentioned in the Fig.1.

Start

Enter acc,data,opcode
give execlk

Positive edge
of execlk

Opcode=“0000”
Acc1=

Acc+data

Opcode=“0001”

Opcode=“0010”

Opcode=“0011”

Opcode=“0100”

Opcode=“0101”

Opcode=“0110”

Acc1=
Acc-data

Acc1=
Data+1

Acc1=
Data-1

Acc1=
Acc and data

Acc1=
Acc or data

Acc1=
Acc xor data

Opcode=“0111”
Acc1=

Not data

Opcode=“1000”

Opcode=“1001”

Opcode=“1010”

Opcode=“1011”

Opcode=“1100”

Opcode=“1101”

Acc1=
Left shift data

Acc1=
Right shift Data

Acc1=acc
(jump)

Acc1=Acc
(skip)

Acc1=Acc
(halt)

Acc1= data
(ldacc)

Stop

Stop

Stop

Stop

Stop

Stop

Stop

Stop

Stop

Stop

Stop

Stop

Stop

Stop

Stop

Fig.1. Block Diagram of ALU implementation

The implementation of Accumulator is given as shown in

the Fig.2.

Fig. 2. implementation of ACC

V. TOP ORDER MODULE

IMPLEMENTATION

Let us consider an instance when some information is

stored in the memory. Now when the system is switched

on, CPU is initialized. In order to fetch an instruction, as a

result the program goes to the location in the memory that
is pointed out by the program counter. After some

instance, the instruction from the memory is put on the

data bus. This cycle is called the instruction fetch cycle.

The instruction is now available at the data bus. at next

instance; the instruction is loaded into the instruction

register. This is called the instruction load. In this cycle

the 4 msb’s of the instruction are separated and put in the

opcode register and are loaded to control unit as well as

ALU. The rest of the bits are sent out as Irout.

The outputs of the instruction register and the program

counter are connected to a mux. During the negative edge

of the fetch signal, the output of the instruction register is

selected, while the output from the program counter is

selected during the positive edge of fetch cycle. Now

when the fetch signal goes low the mux selects the output

from the instruction register and it points to the location of

the operand. Now the operand present in the location is

placed on the data bus. After an instruction is fetched the

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5682

program counter is incremented. It points to the next

location. Now the operand is available at the ALU. The

operand is taken in by the ALU and operates on it. Now

the result is available at acc1 at positive edge of execlk.
During the negative edge of execlk, the result at the Acc1

register is placed on the data bus, which is sent and loaded

into the accumulator for any further operations. If the data

has to be stored into the memory, then during this clock

cycle, Rd and Wr has to be 0 & 1 respectively. As a result

the accumulator is connected to the memory and the value

in the accumulator is sent back to a location in the memory

through a module named Buffer.A characteristic of CISC

processor is their ability to execute one instruction per

clock cycle.

V. RESULTS

FPGA implementation of the 32 bit CPU involves in

implementation of

a) Arthematic Logic Unit

b) Accumulator

c) 32 bit Memory Unit

d) 32 bit MUX
e) Instruction Register

f) Program Counter

In this results sub section the implementation of some

above the blocks are presented for specific data set which

is 32 bit. Fig. 3(a)-(d) are the screen shots of the results of

implementation of 32 bit Memory unit, MUX, Instruction

Register and Program Counter.

(a)

(b)

(c)

(d)

Fig.3 FPGA implementation of (a) Instruction Register

(b)Memory (c) MUX (d) Program Counter

V. CONCLUSION

A 32 bit full CPU implementation using FPGA is

performed and the results are presented regarding some

the important blocks of the CPU and verified with a 32 bit

data.

REFERENCES
[1] Mrs. Rupali S. Balpande, Mrs.Rashmi S. Keote, Design of FPGA

based Instruction Fetch & Decode Module of 32-bit RISC (MIPS)

Processor, 2011 International Conference on Communication

Systems and Network Technologies, 978-0-7695-4437-3/11,

[2] 2011 IEEE

[3] Wang-Yuan Zhen, IBM-PC Macro Asm Program, Huazhong

University of Science and Technology Press, 1996.9.

[4] MIPS Technologies, Inc. MIPS32™ Architecture For

Programmers Volume II: The MIPS32™ Instruction Set June 9, 2003

[5] Zheng-WeiMin, Tang-ZhiZhong. Computer System Structure (The

second edition), Tsinghua University Press, 2006

[6] Pan-Song, Huang-JiYe, SOPC Technology Utility Tutorial,

Tsinghua University Press, 2006.

BIOGRPHIES

Saraswathi.P is cureently pursuing her Masters in

Technology ith specialization in VLSI from

Avanthi Institute of Engineering &

Technology, Visakhapaatnam. Her research
interest include FPGA, VHDL and Verilog

Programming.

http://www.ijarcce.com/

