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Abstract: Data mining may be viewed as the extraction of the hidden predictive information from large databases, is a 

powerful new technology with great potential to analyze important information in the data warehouse. Nearest neighbor 

search (NNS), also known as proximity search, similarity search or closest point search, is an optimization problem for 

finding closest points in metric spaces. Brute-force search is a very general problem-solving technique that consists of 

systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the 

problem's statement. A Brute-force algorithm for string matching problem has two inputs to be considered: pattern and 

text. A k-d tree, or k-dimensional tree, is a data structure used for organizing some number of points in a space with k 

dimensions. K-d trees are very useful for range and nearest neighbour searches.  

In this paper, we studied and compared k-d tree algorithm and brute force algorithm on various levels. The use of the 

approximate k-nearest neighbour with K-d Tree data structure and comparing its performance attributes to the brute-

force approach. In approximate nearest neighbour to evaluate and compare the efficiency of the data structure when 

applied on a particular number of points, distance and execution time. The work performed between two techniques and 

select the best one. The result of the work performed in this paper revealed better performance using the k-d tree, 

compared to the brute-force approach. The aim of the algorithm is to make faster, more accurate and efficient data 

structure primarily depends on a particular data set. It can be further expanded as by changing the k-d tree traversal 

technique. We have proposed a new modified traversal technique for k-d tree.  
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I. INTRODUCTION 

A focus of this research is to improve performance of the 

KNN approach and to demonstrate its performance in a 

real-world problem. Another objective of this paper is to 

test the performance of the existing K-d tree approach. 

There are a large number of methods, techniques and 

algorithms that organize, manage, and maintain objects in 

a structured manner. The purpose of k-nearest neighbour 

(kNN) is to calculate the nearest neighbour on the basis of 

value of k, that specifies how many nearest neighbours are 

to be considered to define the class of a sample data point 

[1]. The k-nearest neighbour join combines each point of 

one point set with its k nearest neighbours [2]. The general 

model of a KNN query is that the user gives many query 

types such a point query in multidimensional space and a 

distance metric for measuring distances between points in 

this space. The system is then tried to find the K closest or 

nearest answers in the database from the submitted query 

(i.e. query point). Generally distance metrics may include: 

Euclidean distance [3].   

Given a set of n points in a d-dimensional space, the k-d 

tree is constructed recursively as follows. First, one finds a 

median of the values of the ith coordinates of the points 

(initially, i = 1). That is, a value M is computed, so that at  

 

 

 

 

least 50% of the points have their ith coordinate greater-

or-equal to M, while at least 50% of the points have their 

coordinate smaller than or equal to M. The value of x is 

stored, and the set P is partitioned into PL and PR , where 

PL contains only the points with their ith coordinate 

smaller than or equal to M, and |PR| = |PL |±1. The process 

is then repeated recursively on both PL and PR, with i 

replaced by i + 1 (or 1, if i = d). When the set of points at a 

node has size 1, the recursion stops. The kNN 

implementation can be done using k-d tree algorithm 

increase the speed of basic KNN algorithm [4], [5].  

The simplest version of the kNN algorithm is the 'Brute 

Force' implementation and consists of three stages. The 

first stage is to calculate all of the `distances' from each 

query point to every reference point in the training set. The 

second stage is to sort these distances and select the k 

objects that are the closest from which the third and final 

stage of classification can be performed. More formally, 

KNN finds the K closest (or most similar) points to a 

query point among N points in a d- dimensional attribute 

(or feature) space. K is the number of neighbours that are 

considered from a training data set and typically ranges 

from 1 to 11 [1].  

A. Data Mining 

http://en.wikipedia.org/wiki/Metric_space
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Data mining is an interdisciplinary subfield of computer 

science which involves computational process of large 

data sets patterns discovery. The goal of this advanced 

analysis process is to extract information from a data set 

and transform it into an understandable structure for 

further use. The methods used are at the juncture of 

artificial intelligence, machine learning, statistics, database 

systems and business intelligence. Data Mining is about 

solving problems by analyzing data already present in 

databases. Data mining is the process of analyzing data 

from different perspectives and summarizing it into useful 

information. Data mining is also known as Knowledge 

Discovery in Data (KDD) [6]. Data mining is a powerful 

tool that can help to find patterns and relationships within 

our data. Data mining discovers hidden information from 

large databases. To ensure meaningful data mining results, 

we must understand our data.  

 

Figure: 1 shows the Process of Data Mining. 

 

Following can be done using Data mining process [7]. 

a. It take out, change, and load data onto the data 

warehouse system. 

b. It store and manage the data in a database system. 

c. It provides data access to business analysts, 

information technology professionals and other persons. 

d. Analysis of the data can be done by application 

software. 

It represents the data in an understandable format, such as 

a graph or table. 

B. Data Structure 

Data structures are ways to organize data (information). 

Data structure is a particular way of storing and 

organizing data in a computer so that it can be 

used efficiently. Data structures are a method of 

representing of logical relationships between individual 

data elements related to the solution of a given problem. 

Data structures are the most convenient way to handle data 

of different types including abstract data type for a known 

problem. The components of data can be organized and 

records can be maintained. Further, the record formation 

leads to the development of abstract data type and 

database systems. In data structures, we also have to 

decide on the storage, retrieval and operation that should 

be carried out between logically related items. For 

example, the data must be stored in memory in computer-

understandable format, i.e. 0 and 1 and the data stored 

must be retrieved in human-understandable format, i.e. 

ASCII. In order to transform data various operations have 

to be performed [8]. 

C. Binary Search Tree 

 

A binary tree in which the nodes are labeled with elements 

of an ordered dynamic set and the following BST property 

is satisfied: all elements stored in the left subtree of any 

node x are less than the element stored at x and all 

elements stored in the right subtree of x are greater than 

the element at x. 

Figure shows a binary search tree. Notice that this tree is 

obtained by inserting the values 13, 3, 4, 12, 14, 10, 5, 1, 

8, 2, 7, 9, 11, 6, 18 in that order, starting from an empty 

tree [9]. 

 

 

Figure: 2  An example of a binary search tree 

1. Search is straightforward in a BST. Start with the 

root and keep moving left or right using the BST property. 

If the key we are seeking is present, this search procedure 

will lead us to the key. If the key is not present, we end up 

in a null link. 

2. Insertion in a BST is also a straightforward 

operation. If we need to insert an element x, we first 

search for x. If x is present, there is nothing to do. If x is 

not present, then our search procedure ends in a null link. 

It is at this position of this null link that x will be included. 

3. If we repeatedly insert a sorted sequence of 

values to form a BST, we obtain a completely skewed 

BST. The height of such a tree is n - 1 if the tree 

has n nodes. Thus, the worst case complexity of searching 

or inserting an element into a BST having n nodes is O(n).  

Binary search tree (BST), sometimes also called an 

ordered or sorted binary tree, is a node-based binary 

tree data structure which has the following properties:  

http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Binary_tree
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1. The left subtree of a node contains only nodes 

with keys less than the node's key. 

2. The right subtree of a node contains only nodes 

with keys greater than the node's key. 

3. The left and right subtree each must also be a 

binary search tree. 

4. There must be no duplicate nodes. 

Generally, the information represented by each node is a 

record rather than a single data element. However, for 

sequencing purposes, nodes are compared according to 

their keys rather than any part of their associated records 

[10]. 

D. Nearest Neighbour 

 

Nearest neighbour search (NNS) also known as proximity 

search, similarity search or closest point search, is an 

optimization problem for finding closest points in metric 

spaces. The problem is: given a set S of points in a metric 

space M and a query point q ∈ M, find the closest point in 

S to q. In many cases, M is taken to be d-dimensional 

Euclidean space and distance is measured by Euclidean 

distance or Manhattan distance [11]. For some 

applications we may have N data-points and wish to know 

which is the nearest neighbor for every one of those N 

points. This could of course be achieved by running a 

nearest-neighbor search once for every point, but an 

improved strategy would be an algorithm that exploits the 

information redundancy between these N queries to 

produce a more efficient search. Nearest neighbor is a 

technique that is quite similar to clustering - its essence is 

that in order to predict what a prediction value is in one 

record look for records with similar predictor values in the 

historical database and use the prediction value from the 

record that it “nearest” to the unclassified record [12]. 

E. K-nearest neighbors 

K-nearest neighbour uses the training set directly to 

classify an input when an input is given. When using a k-

nearest neighbor algorithm on an input with d attributes 

the input is classified by taking a majority vote of the k 

(where k is some user specified constant) closest training 

records across all d attributes. "Closest" as used means the 

distance an attribute is away from the same attribute of the 

training set, using some specified similarity metric. k-

nearest neighbour (kNN) in which nearest neighbour is 

calculated on the basis of value of k, that specifies how 

many nearest neighbours are to be considered to define 

class of a sample data point. The training points are 

assigned weights according to their distances from sample 

data point. But still, the computational complexity and 

memory requirements remain the main concern always. 

The general model of a KNN query is that the user gives 

many query types such a point query in multidimensional 

space and a distance metric for measuring distances 

between points in this space [13]. The system is then tried 

to find the K closest or nearest answers in the database 

from the submitted query (i.e. query point). Generally 

distance metrics may include: Euclidean distance, 

Manhattan distance, etc. 

K-nearest neighbour algorithm (KNN) is part of 

supervised learning that has been used in many 

applications in the field of data mining, statistical pattern 

recognition and many others. It is usual to use the 

Euclidean distance. 

The algorithm on how to compute the K-nearest   

neighbors is as follows: 

1. Determine the parameter K = number of nearest 

neighbors beforehand.  

2. Calculate the distance between the query-instance 

and all the training samples. You can use any distance 

algorithm.  

3. Sort the distances for all the training samples and 

determine the nearest neighbors based on the K-th 

minimum distance.  

4. Since this is supervised learning, get all the 

Categories of your training data for the sorted value which 

fall under K.  

5. Use the majority of nearest neighbors as the 

prediction value of the query instance [14]. 

6. Approximate Nearest Neighbour (ANN) 

 

In some applications it may be acceptable to retrieve a 

"good guess" of the nearest neighbor. In those cases, we 

can use an algorithm which doesn't guarantee to return the 

actual nearest neighbor in every case, in return for 

improved speed or memory savings. Often such an 

algorithm will find the nearest neighbor in a majority of 

cases, but this depends strongly on the dataset being 

queried [15]. 

F. K-d Tree 

A k-d tree, or k-dimensional tree, is a data structure used 

for organizing some number of points in a space with k 

dimensions. It is a binary search tree with other constraints 

imposed on it. K-d trees are very useful for range and 

nearest neighbour searches. The root-cell of this tree 

represents the entire simulation volume. The other cells 

represent rectangular sub-volumes that contain the mass, 

center-of-mass, and quadrupole moment of their enclosed 

regions. It was one of the early structures used for 

indexing in multiple dimensions. Each level of K-d tree 

partitions the space into two partitions, the partitioning is 

done along one dimension of the node at the top level of 

the tree, along another dimension in nodes at the next 

level, and so on, iterating through the dimensions. The 

partitioning proceeds in such a way that, at each node, 

approximately one half of the points stored in the subtree 

fall on one side, and one half fall on the other. Partitioning 

stops when a node has less than a given maximum number 

of points [16].  

http://en.wikipedia.org/wiki/Tree_(data_structure)#Subtree
http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Taxicab_geometry
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Figure: 3  K-d Tree Partitioning 

Their purpose is always to hierarchically decompose space 

into a relatively small number of cells such that no cell 

contains too many input objects. This provides a fast way 

to access any input object by position. We traverse down 

the hierarchy until we find the cell containing the object. 

Typical algorithms construct k-d trees by partitioning 

point sets recursively along with different dimensions. 

Each node in the tree is defined by a plane through one of 

the dimensions that partitions the set of points into 

left/right (or up/down) sets, each with half the points of the 

parent node. These children are again partitioned into 

equal halves, using planes through a different dimension. 

Partitioning stops after log n levels, with each point in its 

own leaf cell [17]. 

i) K-d Tree Algorithm 

  

 The k-d tree is a binary tree in which every node is a k-

dimensional point. Every non-leaf node can be thought of 

as implicitly generating a splitting hyper-plane that divides 

the space into two parts, known as half-spaces. Points to 

the left of this hyper-plane represent the left subtree of that 

node and points right of the hyper-plane are represented by 

the right subtree. The hyper-plane direction is chosen in 

the following way: every node in the tree is associated 

with one of the k dimensions, with the hyper-plane 

perpendicular to that dimension's axis. So, for example, if 

for a particular split the "x" axis is chosen, all points in the 

subtree with a smaller "x" value than the node will appear 

in the left subtree and all points with larger "x" value will 

be in the right subtree. In such a case, the hyper-plane 

would be set by the x-value of the point, and its normal 

would be the unit x-axis [18]. 

The nearest neighbor search (NN) algorithm aims to find 

the point in the tree that is nearest to a given input point. 

This search can be done efficiently by using the tree 

properties to quickly eliminate large portions of the search 

space. Searching for a nearest neighbor in a k-d tree 

proceeds as follows: 

 

1. Starting with the root node, the algorithm moves 

down the tree recursively, in the same way that it would if 

the search point were being inserted (i.e. it goes left or 

right depending on whether the point is less than or greater 

than the current node in the split dimension). 

2. Once the algorithm reaches a leaf node, it saves 

that node point as the "current best". 

3. The algorithm unwinds the recursion of the tree, 

performing the following steps at each node: 

 

1. If the current node is closer than the current   

best, then it becomes the current best. 

2. The algorithm checks whether there could be any 

points on the other side of the splitting plane that are 

closer to the search point than the current best. In concept, 

this is done by intersecting the splitting hyper-plane with a 

hyper-sphere around the search point that has a radius 

equal to the current nearest distance. Since the hyper-

planes are all axis-aligned this is implemented as a simple 

comparison to see whether the difference between the 

splitting coordinate of the search point and current node is 

less than the distance (overall coordinates) from the search 

point to the current best. 

1. If the hyper-sphere crosses the plane, there could 

be nearer points on the other side of the plane, so the 

algorithm must move down the other branch of the tree 

from the current node looking for closer points, following 

the same recursive process as the entire search. 

2. If the hyper-sphere doesn't intersect the splitting 

plane, then the algorithm continues walking up the tree, 

and the entire branch on the other side of that node is 

eliminated.  

 

When the algorithm finishes this process for the root node, 

then the search is complete. 

G. Brute Force 

 

Approximate k-nearest neighbour (kNN) search using a 

brute force approach as well as with the help of the k-d 

tree will be used to reach of the main objective of this 

research (i.e. to speed-up K-nearest neighbour searches). 

Brute-force search or exhaustive search is a very general 

problem-solving technique that consists of systematically 

enumerating all possible candidates for the solution and 

checking whether each candidate satisfies the problem's 

statement [19].  

1. Compute all the distances between the query 

point and reference points. 

2. Sort the computed distances. 

3. Select the k reference points with the smallest 

distances. 

4. Classification vote by k nearest objects. 

5. Repeat steps (1 to 4) for all query points. 

 

II. EXPERIMENTAL RESULTS AND 

OUTPUTS 

In this paper, presented the experimental results was 

conducted for computing distance and execution time for 

nearest neighbours, with number of data set points 

assuming are organized in 2 dimensions. In first 

experiment, as shown in figure 4. Analyze the brute force 
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algorithm that computes the distance and execution time 

between randomly generated number of data set points.  

Number of data set points is 11. Enter range one number 

after the another: (min, max) numbers are 1 to 10. 

Randomly data set of 11 points is generated and the 

distance in nearest neighbour & execution time (in 

microseconds) is computed by brute force nearest 

neighbour algorithm. In second experiment, as shown in 

figure 5. We presented an analyzed k-d tree algorithm that 

computes the distance and execution time between number 

of data set points. Number of data set points in file is 10. 

We entered  two co-ordinates of the point and the distance 

between these points and execution time (in microseconds) 

is computed by the k-d tree nearest neighbour algorithm. 

 

Figure: 4  Brute-force output with distance and execution time 

 

 

Figure: 5  K-d Tree output with distance and execution time 

 
Figure: 6 

In this figure, we consider N randomly generated points 

shown as blue small circles. Then we consider a point 

from all randomly generated points and find K nearest 

neighbours in accordance with that point shown as red 

small circle. We define the value of K. All the nearest 

neighbours in accordance with that point shown as green 

small circles.   In this case, we use number of points is 100 

and search 15 nearest neighbour. Switch mode used for 

two purposes edit points and select nearest neighbour 

points.  

A. Table 

 Given table show the distance and execution time of 

both the algorithms when number of data set points are 

computed. The execution time required by both 

approaches was different. Distance found by both 

approaches with the same points. The K-d Tree algorithm 

needs less number of seconds in comparing with brute-

force approach. 

Table I: Comparison Of Brute-Force And K-D Tree Algorithm 

 

Distance 

 

Brute-force Time 

 

K-d tree Time 

 

0.845931 

 

7188(ms) 

 

4781(ms) 

 

0.658027 

 

4923(ms) 

 

3938(ms) 

 

0.697710 

 

4707(ms) 

 

3359(ms) 

 

1.080046 

 

4512(ms) 

 

3078(ms) 

 

0.560892 

 

4574(ms) 

 

2391(ms) 

 

B. Graphical Representation 
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 The experiments have been performed on a 1.73 GHz 

PC, with Intel Pentium Dual-Core and 1 GB memory. The 

experiment was conducted for computing distance and 

execution time for nearest neighbours, with number of 

data set points assuming are organized in 2 dimensions.  

The experiment has been performed to compare the 

performance of both, K-d tree and brute-force, for data set 

points in a 2-dimentional space. The execution time 

required by both approaches was different. Distance found 

by both approaches with the same points. Better 

performance was achieved when the k-d tree was used for 

larger number of data sets for nearest neighbours. It shows 

the execution time and distance required by K-d tree and 

Brute-force when number of data set points are computed. 

However, number of data set points for nearest 

neighbours, better performance was observed using the K-

d tree.  

 

 

Graph1: K-d Tree vs. Brute-Force Performance 

The K-d Tree algorithm needs less number of seconds in 

comparing with brute-force especially when using a large 

volumes of data in a 2-dimension space. 

III. CONCLUSION 

The use of the approximate k-nearest neighbour with k-d 

Tree data structure and comparing its performance to the 

brute-force approach. The work is done between two 

techniques and select the best one. The results of the work 

performed in this paper revealed better performance using 

the k-d Tree, compared to the traditional brute-force 

approach. The aim of the algorithm is to make faster, more 

accurate and efficient data structure primarily depends on 

a particular data set. It can be further expanded as by 

changing the k-d tree traversal technique. We have 

proposed a new modified traversal technique for k-d tree. 

From the implementation of K-d tree and Brute-force 

algorithms we now can conclude that methods in K-d tree 

are comparatively faster than Brute-force. 
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