
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5291

Comparison of Brute-Force and K-D Tree

Algorithm

Deepika Verma
1
, Namita Kakkar

2
, Neha Mehan

3

M.tech Student, Department of Computer Science & Engineering, RBIEBT (Kharar, Punjab), India
1

Assistant Professor, Department of Computer Science & Engineering, RBIEBT (Kharar, Punjab), India
2

Assistant Professor, Department of Computer Science & Engineering, RBIEBT (Kharar, Punjab), India
3

Abstract: Data mining may be viewed as the extraction of the hidden predictive information from large databases, is a

powerful new technology with great potential to analyze important information in the data warehouse. Nearest neighbor

search (NNS), also known as proximity search, similarity search or closest point search, is an optimization problem for

finding closest points in metric spaces. Brute-force search is a very general problem-solving technique that consists of

systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the

problem's statement. A Brute-force algorithm for string matching problem has two inputs to be considered: pattern and

text. A k-d tree, or k-dimensional tree, is a data structure used for organizing some number of points in a space with k

dimensions. K-d trees are very useful for range and nearest neighbour searches.

In this paper, we studied and compared k-d tree algorithm and brute force algorithm on various levels. The use of the

approximate k-nearest neighbour with K-d Tree data structure and comparing its performance attributes to the brute-

force approach. In approximate nearest neighbour to evaluate and compare the efficiency of the data structure when

applied on a particular number of points, distance and execution time. The work performed between two techniques and

select the best one. The result of the work performed in this paper revealed better performance using the k-d tree,

compared to the brute-force approach. The aim of the algorithm is to make faster, more accurate and efficient data

structure primarily depends on a particular data set. It can be further expanded as by changing the k-d tree traversal

technique. We have proposed a new modified traversal technique for k-d tree.

Keywords: Data Mining, Data Structure, Binary Search Tree, Nearest neighbour, Approximate K-NN, K-d tree, Brute-force.

I. INTRODUCTION

A focus of this research is to improve performance of the

KNN approach and to demonstrate its performance in a

real-world problem. Another objective of this paper is to

test the performance of the existing K-d tree approach.

There are a large number of methods, techniques and

algorithms that organize, manage, and maintain objects in

a structured manner. The purpose of k-nearest neighbour

(kNN) is to calculate the nearest neighbour on the basis of

value of k, that specifies how many nearest neighbours are

to be considered to define the class of a sample data point

[1]. The k-nearest neighbour join combines each point of

one point set with its k nearest neighbours [2]. The general

model of a KNN query is that the user gives many query

types such a point query in multidimensional space and a

distance metric for measuring distances between points in

this space. The system is then tried to find the K closest or

nearest answers in the database from the submitted query

(i.e. query point). Generally distance metrics may include:

Euclidean distance [3].

Given a set of n points in a d-dimensional space, the k-d

tree is constructed recursively as follows. First, one finds a

median of the values of the ith coordinates of the points

(initially, i = 1). That is, a value M is computed, so that at

least 50% of the points have their ith coordinate greater-

or-equal to M, while at least 50% of the points have their

coordinate smaller than or equal to M. The value of x is

stored, and the set P is partitioned into PL and PR , where

PL contains only the points with their ith coordinate

smaller than or equal to M, and |PR| = |PL |±1. The process

is then repeated recursively on both PL and PR, with i

replaced by i + 1 (or 1, if i = d). When the set of points at a

node has size 1, the recursion stops. The kNN

implementation can be done using k-d tree algorithm

increase the speed of basic KNN algorithm [4], [5].

The simplest version of the kNN algorithm is the 'Brute

Force' implementation and consists of three stages. The

first stage is to calculate all of the `distances' from each

query point to every reference point in the training set. The

second stage is to sort these distances and select the k

objects that are the closest from which the third and final

stage of classification can be performed. More formally,

KNN finds the K closest (or most similar) points to a

query point among N points in a d- dimensional attribute

(or feature) space. K is the number of neighbours that are

considered from a training data set and typically ranges

from 1 to 11 [1].

A. Data Mining

http://en.wikipedia.org/wiki/Metric_space

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5292

Data mining is an interdisciplinary subfield of computer

science which involves computational process of large

data sets patterns discovery. The goal of this advanced

analysis process is to extract information from a data set

and transform it into an understandable structure for

further use. The methods used are at the juncture of

artificial intelligence, machine learning, statistics, database

systems and business intelligence. Data Mining is about

solving problems by analyzing data already present in

databases. Data mining is the process of analyzing data

from different perspectives and summarizing it into useful

information. Data mining is also known as Knowledge

Discovery in Data (KDD) [6]. Data mining is a powerful

tool that can help to find patterns and relationships within

our data. Data mining discovers hidden information from

large databases. To ensure meaningful data mining results,

we must understand our data.

Figure: 1 shows the Process of Data Mining.

Following can be done using Data mining process [7].

a. It take out, change, and load data onto the data

warehouse system.

b. It store and manage the data in a database system.

c. It provides data access to business analysts,

information technology professionals and other persons.

d. Analysis of the data can be done by application

software.

It represents the data in an understandable format, such as

a graph or table.

B. Data Structure

Data structures are ways to organize data (information).

Data structure is a particular way of storing and

organizing data in a computer so that it can be

used efficiently. Data structures are a method of

representing of logical relationships between individual

data elements related to the solution of a given problem.

Data structures are the most convenient way to handle data

of different types including abstract data type for a known

problem. The components of data can be organized and

records can be maintained. Further, the record formation

leads to the development of abstract data type and

database systems. In data structures, we also have to

decide on the storage, retrieval and operation that should

be carried out between logically related items. For

example, the data must be stored in memory in computer-

understandable format, i.e. 0 and 1 and the data stored

must be retrieved in human-understandable format, i.e.

ASCII. In order to transform data various operations have

to be performed [8].

C. Binary Search Tree

A binary tree in which the nodes are labeled with elements

of an ordered dynamic set and the following BST property

is satisfied: all elements stored in the left subtree of any

node x are less than the element stored at x and all

elements stored in the right subtree of x are greater than

the element at x.

Figure shows a binary search tree. Notice that this tree is

obtained by inserting the values 13, 3, 4, 12, 14, 10, 5, 1,

8, 2, 7, 9, 11, 6, 18 in that order, starting from an empty

tree [9].

Figure: 2 An example of a binary search tree

1. Search is straightforward in a BST. Start with the

root and keep moving left or right using the BST property.

If the key we are seeking is present, this search procedure

will lead us to the key. If the key is not present, we end up

in a null link.

2. Insertion in a BST is also a straightforward

operation. If we need to insert an element x, we first

search for x. If x is present, there is nothing to do. If x is

not present, then our search procedure ends in a null link.

It is at this position of this null link that x will be included.

3. If we repeatedly insert a sorted sequence of

values to form a BST, we obtain a completely skewed

BST. The height of such a tree is n - 1 if the tree

has n nodes. Thus, the worst case complexity of searching

or inserting an element into a BST having n nodes is O(n).

Binary search tree (BST), sometimes also called an

ordered or sorted binary tree, is a node-based binary

tree data structure which has the following properties:

http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Binary_tree

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5293

1. The left subtree of a node contains only nodes

with keys less than the node's key.

2. The right subtree of a node contains only nodes

with keys greater than the node's key.

3. The left and right subtree each must also be a

binary search tree.

4. There must be no duplicate nodes.

Generally, the information represented by each node is a

record rather than a single data element. However, for

sequencing purposes, nodes are compared according to

their keys rather than any part of their associated records

[10].

D. Nearest Neighbour

Nearest neighbour search (NNS) also known as proximity

search, similarity search or closest point search, is an

optimization problem for finding closest points in metric

spaces. The problem is: given a set S of points in a metric

space M and a query point q ∈ M, find the closest point in

S to q. In many cases, M is taken to be d-dimensional

Euclidean space and distance is measured by Euclidean

distance or Manhattan distance [11]. For some

applications we may have N data-points and wish to know

which is the nearest neighbor for every one of those N

points. This could of course be achieved by running a

nearest-neighbor search once for every point, but an

improved strategy would be an algorithm that exploits the

information redundancy between these N queries to

produce a more efficient search. Nearest neighbor is a

technique that is quite similar to clustering - its essence is

that in order to predict what a prediction value is in one

record look for records with similar predictor values in the

historical database and use the prediction value from the

record that it “nearest” to the unclassified record [12].

E. K-nearest neighbors

K-nearest neighbour uses the training set directly to

classify an input when an input is given. When using a k-

nearest neighbor algorithm on an input with d attributes

the input is classified by taking a majority vote of the k

(where k is some user specified constant) closest training

records across all d attributes. "Closest" as used means the

distance an attribute is away from the same attribute of the

training set, using some specified similarity metric. k-

nearest neighbour (kNN) in which nearest neighbour is

calculated on the basis of value of k, that specifies how

many nearest neighbours are to be considered to define

class of a sample data point. The training points are

assigned weights according to their distances from sample

data point. But still, the computational complexity and

memory requirements remain the main concern always.

The general model of a KNN query is that the user gives

many query types such a point query in multidimensional

space and a distance metric for measuring distances

between points in this space [13]. The system is then tried

to find the K closest or nearest answers in the database

from the submitted query (i.e. query point). Generally

distance metrics may include: Euclidean distance,

Manhattan distance, etc.

K-nearest neighbour algorithm (KNN) is part of

supervised learning that has been used in many

applications in the field of data mining, statistical pattern

recognition and many others. It is usual to use the

Euclidean distance.

The algorithm on how to compute the K-nearest

neighbors is as follows:

1. Determine the parameter K = number of nearest

neighbors beforehand.

2. Calculate the distance between the query-instance

and all the training samples. You can use any distance

algorithm.

3. Sort the distances for all the training samples and

determine the nearest neighbors based on the K-th

minimum distance.

4. Since this is supervised learning, get all the

Categories of your training data for the sorted value which

fall under K.

5. Use the majority of nearest neighbors as the

prediction value of the query instance [14].

6. Approximate Nearest Neighbour (ANN)

In some applications it may be acceptable to retrieve a

"good guess" of the nearest neighbor. In those cases, we

can use an algorithm which doesn't guarantee to return the

actual nearest neighbor in every case, in return for

improved speed or memory savings. Often such an

algorithm will find the nearest neighbor in a majority of

cases, but this depends strongly on the dataset being

queried [15].

F. K-d Tree

A k-d tree, or k-dimensional tree, is a data structure used

for organizing some number of points in a space with k

dimensions. It is a binary search tree with other constraints

imposed on it. K-d trees are very useful for range and

nearest neighbour searches. The root-cell of this tree

represents the entire simulation volume. The other cells

represent rectangular sub-volumes that contain the mass,

center-of-mass, and quadrupole moment of their enclosed

regions. It was one of the early structures used for

indexing in multiple dimensions. Each level of K-d tree

partitions the space into two partitions, the partitioning is

done along one dimension of the node at the top level of

the tree, along another dimension in nodes at the next

level, and so on, iterating through the dimensions. The

partitioning proceeds in such a way that, at each node,

approximately one half of the points stored in the subtree

fall on one side, and one half fall on the other. Partitioning

stops when a node has less than a given maximum number

of points [16].

http://en.wikipedia.org/wiki/Tree_(data_structure)#Subtree
http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Taxicab_geometry

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5294

Figure: 3 K-d Tree Partitioning

Their purpose is always to hierarchically decompose space

into a relatively small number of cells such that no cell

contains too many input objects. This provides a fast way

to access any input object by position. We traverse down

the hierarchy until we find the cell containing the object.

Typical algorithms construct k-d trees by partitioning

point sets recursively along with different dimensions.

Each node in the tree is defined by a plane through one of

the dimensions that partitions the set of points into

left/right (or up/down) sets, each with half the points of the

parent node. These children are again partitioned into

equal halves, using planes through a different dimension.

Partitioning stops after log n levels, with each point in its

own leaf cell [17].

i) K-d Tree Algorithm

 The k-d tree is a binary tree in which every node is a k-

dimensional point. Every non-leaf node can be thought of

as implicitly generating a splitting hyper-plane that divides

the space into two parts, known as half-spaces. Points to

the left of this hyper-plane represent the left subtree of that

node and points right of the hyper-plane are represented by

the right subtree. The hyper-plane direction is chosen in

the following way: every node in the tree is associated

with one of the k dimensions, with the hyper-plane

perpendicular to that dimension's axis. So, for example, if

for a particular split the "x" axis is chosen, all points in the

subtree with a smaller "x" value than the node will appear

in the left subtree and all points with larger "x" value will

be in the right subtree. In such a case, the hyper-plane

would be set by the x-value of the point, and its normal

would be the unit x-axis [18].

The nearest neighbor search (NN) algorithm aims to find

the point in the tree that is nearest to a given input point.

This search can be done efficiently by using the tree

properties to quickly eliminate large portions of the search

space. Searching for a nearest neighbor in a k-d tree

proceeds as follows:

1. Starting with the root node, the algorithm moves

down the tree recursively, in the same way that it would if

the search point were being inserted (i.e. it goes left or

right depending on whether the point is less than or greater

than the current node in the split dimension).

2. Once the algorithm reaches a leaf node, it saves

that node point as the "current best".

3. The algorithm unwinds the recursion of the tree,

performing the following steps at each node:

1. If the current node is closer than the current

best, then it becomes the current best.

2. The algorithm checks whether there could be any

points on the other side of the splitting plane that are

closer to the search point than the current best. In concept,

this is done by intersecting the splitting hyper-plane with a

hyper-sphere around the search point that has a radius

equal to the current nearest distance. Since the hyper-

planes are all axis-aligned this is implemented as a simple

comparison to see whether the difference between the

splitting coordinate of the search point and current node is

less than the distance (overall coordinates) from the search

point to the current best.

1. If the hyper-sphere crosses the plane, there could

be nearer points on the other side of the plane, so the

algorithm must move down the other branch of the tree

from the current node looking for closer points, following

the same recursive process as the entire search.

2. If the hyper-sphere doesn't intersect the splitting

plane, then the algorithm continues walking up the tree,

and the entire branch on the other side of that node is

eliminated.

When the algorithm finishes this process for the root node,

then the search is complete.

G. Brute Force

Approximate k-nearest neighbour (kNN) search using a

brute force approach as well as with the help of the k-d

tree will be used to reach of the main objective of this

research (i.e. to speed-up K-nearest neighbour searches).

Brute-force search or exhaustive search is a very general

problem-solving technique that consists of systematically

enumerating all possible candidates for the solution and

checking whether each candidate satisfies the problem's

statement [19].

1. Compute all the distances between the query

point and reference points.

2. Sort the computed distances.

3. Select the k reference points with the smallest

distances.

4. Classification vote by k nearest objects.

5. Repeat steps (1 to 4) for all query points.

II. EXPERIMENTAL RESULTS AND

OUTPUTS

In this paper, presented the experimental results was

conducted for computing distance and execution time for

nearest neighbours, with number of data set points

assuming are organized in 2 dimensions. In first

experiment, as shown in figure 4. Analyze the brute force

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5295

algorithm that computes the distance and execution time

between randomly generated number of data set points.

Number of data set points is 11. Enter range one number

after the another: (min, max) numbers are 1 to 10.

Randomly data set of 11 points is generated and the

distance in nearest neighbour & execution time (in

microseconds) is computed by brute force nearest

neighbour algorithm. In second experiment, as shown in

figure 5. We presented an analyzed k-d tree algorithm that

computes the distance and execution time between number

of data set points. Number of data set points in file is 10.

We entered two co-ordinates of the point and the distance

between these points and execution time (in microseconds)

is computed by the k-d tree nearest neighbour algorithm.

Figure: 4 Brute-force output with distance and execution time

Figure: 5 K-d Tree output with distance and execution time

Figure: 6

In this figure, we consider N randomly generated points

shown as blue small circles. Then we consider a point

from all randomly generated points and find K nearest

neighbours in accordance with that point shown as red

small circle. We define the value of K. All the nearest

neighbours in accordance with that point shown as green

small circles. In this case, we use number of points is 100

and search 15 nearest neighbour. Switch mode used for

two purposes edit points and select nearest neighbour

points.

A. Table

 Given table show the distance and execution time of

both the algorithms when number of data set points are

computed. The execution time required by both

approaches was different. Distance found by both

approaches with the same points. The K-d Tree algorithm

needs less number of seconds in comparing with brute-

force approach.

Table I: Comparison Of Brute-Force And K-D Tree Algorithm

Distance

Brute-force Time

K-d tree Time

0.845931

7188(ms)

4781(ms)

0.658027

4923(ms)

3938(ms)

0.697710

4707(ms)

3359(ms)

1.080046

4512(ms)

3078(ms)

0.560892

4574(ms)

2391(ms)

B. Graphical Representation

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5296

 The experiments have been performed on a 1.73 GHz

PC, with Intel Pentium Dual-Core and 1 GB memory. The

experiment was conducted for computing distance and

execution time for nearest neighbours, with number of

data set points assuming are organized in 2 dimensions.

The experiment has been performed to compare the

performance of both, K-d tree and brute-force, for data set

points in a 2-dimentional space. The execution time

required by both approaches was different. Distance found

by both approaches with the same points. Better

performance was achieved when the k-d tree was used for

larger number of data sets for nearest neighbours. It shows

the execution time and distance required by K-d tree and

Brute-force when number of data set points are computed.

However, number of data set points for nearest

neighbours, better performance was observed using the K-

d tree.

Graph1: K-d Tree vs. Brute-Force Performance

The K-d Tree algorithm needs less number of seconds in

comparing with brute-force especially when using a large

volumes of data in a 2-dimension space.

III. CONCLUSION

The use of the approximate k-nearest neighbour with k-d

Tree data structure and comparing its performance to the

brute-force approach. The work is done between two

techniques and select the best one. The results of the work

performed in this paper revealed better performance using

the k-d Tree, compared to the traditional brute-force

approach. The aim of the algorithm is to make faster, more

accurate and efficient data structure primarily depends on

a particular data set. It can be further expanded as by

changing the k-d tree traversal technique. We have

proposed a new modified traversal technique for k-d tree.

From the implementation of K-d tree and Brute-force

algorithms we now can conclude that methods in K-d tree

are comparatively faster than Brute-force.

ACKNOWLEDGEMENT

 I would like to thank my guide Er. Namita Kakkar,

Assistant Professor in Department of Computer Science

and Engineering at R.B.I.E.B.T. (Kharar), Punjab, India

for motivating me to do research work on the topic

Comparison of Brute-force and K-d tree algorithm. I

would also like to thank my mother, my father and my

siblings for their continuous support, cooperation, and

guidance throughout my M.Tech work. Moreover I would

also like to thank my Professors who were always there at

the need of the hour and provided with all the help and

facilities, which I required, for my thesis work.

REFERENCES

[1] T. M. Cover and P. E. Hart, (1967) “Nearest Neighbor Pattern
Classification”, IEEE Trans. Inform. Theory, Vol. IT-13, pp 21-27.

[2] Christian Böhm,(2002) "Powerful Database Primitives to Support

High Performance Data Mining", Tutorial, IEEE Int. Conf. on Data
Mining.

[3] Anoop Jain , Parag Sarda , & Jayant R. Haritsa, (2003) "Providing

Diversity in K-Nearest Neighbour Query", Tech. Report TR-2003-
04.

[4] R. F Sproull, (1991) “Refinements to Nearest Neighbor Searching”,

Technical Report, International Computer Science, ACM (18) 9, pp
507-517.

[5] T. Liu, A. W. Moore, A. Gray, (2006) “New Algorithms for

Efficient High Dimensional Non- Parametric Classification”,
Journal of Machine Learning Research, pp 1135-1158.

[6] Ian H. Witten and Eibe Frank, Data Mining- Practical Machine

Learning Tools and Techniques- second Edition.
[7] Fayyad U.M., Piatetsky-shapiro G., Smyth P.,Uthurusamy R.(Eds.):

Advances in Knowledge Discovery and Data Mining. Menlo Park,

CA:AAAI Press/ The MIT Press, 1996.
[8] Paul E. Black (ed.), entry for data structure in Dictionary of

Algorithmsand Data Structures. U.S National Institute of Standards

and Technology. 15 December 2004. Online version Accessed May
21, 2009.

[9] Parlante, Nick (2001). "Binary Trees" CS Education

Library. Stanford University.
[10] Gilberg, R.; Forouzan, B. (2001), "8", Data Structures: A

Pseudocode Approach With C++, Pacific Grove, CA: Brooks/Cole,

p. 339, ISBN 0-534-95216-X.

[11] Andrews, L.. A template for the nearest neighbor problem. Journal,

vol. 19, no 11 (November 2001), 40 - 49, 2001, ISSN:1075-2838,
www.ddj.com/ architect/ 184401449

[12] Nitin Bhatia, Vandana, (2010) "Survey of Nearest Neighbor

Techniques" International Journal of Computer Science and
Information Security, Vol. 8, No. 2

[13] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).
Classification and regression trees. Monterey, CA: Wadsworth &

Brooks/Cole Advanced Books & Software.

[14] SAHARKIZ., TEKNOMO, KARDI.,(FEB 2009). K-NEAREST NEIGHBOR

ALGORITHM, TUTORIAL. HTTP:\\PEOPLE. REVOLEDU. COM\KARDI\

TUTORIAL\KNN.

[15] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Wu,
(1998) "An optimal algorithm for approximate nearest neighbor

searching", Journal of the ACM, 45(6):891-923.

[16] William R. Mark, Gordon Stoll, (2006) "Fast kd-tree Construction
with an Adaptive Error-Bounded Heuristic", Warren Hunt, IEEE

Symposium on Interactive Ray Tracing.

[17] Steven S. Skiena, (2010) "The Algorithm Design Manual", 2nd

Edition, Stony Brook, NY 11794 - 4400.

[18] J.L. Bentley, (1975) "Multidimensional binary search trees used for

associative searching", Comm. ACM, 18(9): 509 517.

[19] Stoimen., Stoimen‟s web log: Computer Algorithms: Brute Force

String Matching. March 2012.

[20] R. Panigrahy. Entropy based nearest neighbor search in high

dimensions. In SODA ‟06: Proceedings of the seventeenth annual

http://en.wikipedia.org/wiki/Dictionary_of_Algorithms_and_Data_Structures
http://en.wikipedia.org/wiki/Dictionary_of_Algorithms_and_Data_Structures
http://en.wikipedia.org/wiki/Dictionary_of_Algorithms_and_Data_Structures
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://www.itl.nist.gov/div897/sqg/dads/HTML/datastructur.html
http://cslibrary.stanford.edu/110/BinaryTrees.html
http://en.wikipedia.org/wiki/Stanford_University
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-534-95216-X
http://www.ddj.com/%20architect/%20184401449
http://www.stoimen.com/blog/author/admin/

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5297

ACM-SIAM symposium on Discrete algorithm (Miami, FL, 2006),

pages 1186–1195. ACM Press, New York, NY, 2006.
[21] Böhm C., Braunmüller B., Krebs F., Kriegel H.-P.: Epsilon Grid

Order: An Algorithm for the Similarity Join on Massive High-

Dimensional Data, ACM SIGMOD Int. Conf. on Management of
Data, 2001.

[22] JOHN PIETER Authenticated Multistep Nearest Neighbour Search

in Data mining International Journal of Communications and
Engineering Volume 01– No., Issue: 02 March2012.

[23] David Hand, Heikki Mannila, and Padhraic Smyth, 2001, Principles

of Data Mining, MIT Press, Cambridge, MA, 2001.
[24] Weinberger, K.Q., Saul, L.K.: Distance Metric Learning for Large

Margin Nearest Neighbor Classification. Journal of machine

Learning Research 10, 207–244 (2009).

[25] A.N.Pathak, Manu Sehgal, Divya Christopher: A Study on

Selective Data Mining Algorithms, IJCSI International Journal of

Computer Science Issues, Vol. 8, Issue 2, March 2011.
[26] Perrizo, M., Denton, and Wang, L. (2005) „An efficient weighted

nearest neighbour classifier using vertical data representation‟,,

International Journal of Business Intelligence and Data Mining,
Vol. 1, No. 1, pp.65–87.

[27] David M. Mount, Analysis of Approximate Nearest Neighbor

Searching with Clustered Point Sets, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 1991.

[28] Jagan Sankaranarayanan, Hanan Samet, Amitabh Varshney: A fast

all nearest neighbor algorithm for applications involving large
point-clouds, Computers & Graphics 31 (2007) 157.174. (Best

Journal Paper of 2007Award).

[29] Madhuri V. Joseph Lipsa Sadath Vanaja Rajan: Data Mining: A
Comparative Study on Various Techniques and Methods.

International Journal of Advanced Research in Computer Science

and Software Engineering 3(2), February - 2013, pp. 106-113.
[30] Barbara D. (ed.) Special Issue on Mining of Large Datasets; IEEE

Data Engineering Bulletin, 21(1), 1998.

