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Abstract: This study proposes the modified and hybrid cuckoo search algorithms deploying the weighted–sum 

multiobjective optimization approach in synthesizing symmetric linear array geometry with high directivity, low average 

side lobe level (SLL), a small half–power beamwidth (HPBW), and/or significant predefined nulls mitigation.  The 

weighted–sum approach optimizes three objective functions simultaneously until the maximum number of iteration 

achieved.  Precisely, the modified cuckoo search (MCS) algorithm is introduced through the integration with the Roulette 

wheel selection operator, the adaptive inertia weight controlling the positions (solutions) exploration, and the dynamic 

discovery rate of solutions.  Besides, there are also the proposals of hybrid MCS with two popular evolutionary algorithms, 
which are the particle swarm optimization (PSO) known as MCSPSO and the genetic algorithm (GA) referred as MCSGA. 

All the modified and hybrid cuckoo search–based multiobjective algorithms go through the weighted–sum approach to 

generate three optimal decision variables, which are array element excitation locations, amplitudes, and phases, 

respectively.   The optimal solutions obtained through various MATLAB simulations are then compared against 

corresponding counterparts.    

 

Keywords: Modified Cuckoo Search Algorithm, Particle Swarm Optimization, Genetic Algorithm, Weighted–Sum 

Multiobjective Optimization, Side Lobe Level Suppression, Half–Power Beamwidth, and Nulls Control.  

 
I. INTRODUCTION 

Many studies have been conducted to design and develop an 

antenna through forming an assembly of radiating elements 
in electrical and geometrical configuration known as an 

array.  The array is useful in detecting and processing signals 

arriving from different directions of arrival [1]. Hence, the 

main aim of performing array geometry synthesis is to 

determine the physical layout of the array, which can 

generate a radiation pattern closest to the desired pattern.  

Precisely, the array pattern should possess high power gain, 

lower side lobe level (SLL), controllable beam width [2] and 

good azimuthal symmetry.  This can be achieved by 

determining optimal element locations (with respect to the 

λ/2 inter-element spacing), excitation current amplitudes and 

excitation current phases (with a random distribution) 
applied on the array elements, respectively [3].  Due to their 

high versatility, flexibility and capability to optimize 

complex multidimensional problem, modern stochastic 

algorithm techniques such as genetic algorithm (GA) [4], 

and particle swarm optimization (PSO) [5], have been 

applied for antenna array optimization.  These evolutionary 

algorithm (EA) techniques provide better results relatively 

than the original gradient methods. 

 

II. SYSTEM DESCRIPTION 

A. Modified Cuckoo Search Metaheuristic Algorithm 

 
Cuckoo search (CS) is inspired by the obligate brood 

parasitism of some cuckoo species by laying their eggs in 

the nests of other host birds (of other species) [6]. Some host 

birds can engage direct conflict with the intruding cuckoos. 

For example, if a host bird discovers the eggs are not their 

own, it will either throw these alien eggs away or simply 

abandon its nest and build a new nest elsewhere.  In this 

study, the postulated MCSPSO, MCSGA, and MCS 

algorithms use the dynamic discovery rate, Pa, and the 

inertia weight, w. The process of generating new solutions 

𝑥 𝑡+1  for a cuckoo i, where the Lévy flight integrated with 
adaptive weight, w can be reinstated as [7]: 

𝑥𝑖
𝑡+1 = 𝑤. 𝑥𝑖

𝑡 + 𝛼 ⊕ Lévy 𝜆                 

(1) 

where 𝛼 > 0 is the step size related to the scales of the 

problem of interest while the product ⊕ means entry−wise 

multiplications. The larger w leads to the greater control of 

exploration or exploitation of host nest positions (solutions) 

and vice versa.  Based on (2), the w is linearly decreased 

from a relatively large value to a small value through the 
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course so that all the proposed MCS−based algorithms have 

a better performance compared to the fixed w settings. 

𝑤 = 𝑤𝑚𝑎𝑥 −   𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛  × iter /maxIter              
(2) 

where wmax is the maximum weight and wmin is the minimum 

weight, respectively.  Besides, we also apply the dynamic 

fraction probability, Pa:  
𝑃𝑎 = 𝑃𝑎𝑚𝑎𝑥 −   𝑃𝑎𝑚𝑎𝑥 − 𝑃𝑎𝑚𝑖𝑛  × iter /maxIter            
(3) where 𝑃𝑎𝑚𝑎𝑥 is the maximum discovery rate, and 𝑃𝑎𝑚𝑖𝑛 is 

the minimum discovery rate, respectively.  
 

B. Weighted–Sum Approach 

 

In the weighted–sum approach, the authors propose the 

hybridization of the MCS with particle swarm optimization 

(MCSPSO) and the MCS with genetic algorithms 

(MCSGA).  These algorithms are directly compared with 

other stochastic rivals, e.g. hybrid GAPSO, modified CS 

(MCS), and original CS algorithms, respectively.  
Technically speaking, the weighted aggregation–based 

objective function is defined as:  
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 iter =

𝑓1

mean  𝑓1 iter =1  
+

𝑓2

mean  𝑓2 iter =1  
+

𝑓3

mean  𝑓3 iter =1  
       

                      
(4) 

For simplicity, it is assumed that the weight given for all 

objectives f1, f2, and f3 equal to 1.0.  The weighted–sum 

fitness in (8) is normalized through dividing fitness’s f1, f2, 

and f3 in each cycle with their respective mean values of the 

first iteration primarily to reduce the possible bias caused by 
differences in terms of magnitude or value for each 

objective. The resulting optimal location, amplitude, and 

phase vectors taken from the global minimum value of (4) 

are declared to be the optimal solutions.  Precisely, 𝑓1 =
min 1 directivity                   (5) 

Mathematically, the directivity in terms of beam solid angle 

can be defined as: 

𝐷 𝜃,𝜑 =
𝑈 𝜃 ,𝜑 

𝑈𝑎𝑣𝑔
= 4𝜋

𝑈 𝜃 ,𝜑 

𝑃𝑟𝑎𝑑
                 

(6) 

where 𝑈 𝜃,𝜑 = 𝐵𝑜𝐹 𝜃,𝜑 is the antenna radiation 

intensity, and 𝑈𝑎𝑣𝑔  is radiation intensity averaged over all 

directions.  In this study, the directivity is measured in 

decibel (dB) unit through a formula: 

𝐷𝑑𝐵 𝜃,𝜑 = 10 log10 𝐷 𝜃,𝜑                             

(7) 

 
On the other hand, f2 is expressed as: 

𝑓2 = min  
1

∆∅𝑖
  𝐴𝐹 ∅  2𝑑∅ +   𝐴𝐹 ∅𝑘  

2

𝑘

∅𝑢𝑖

∅𝑙𝑖𝑖

  

             (8) 

The first−term on the right−hand side of the fitness function 

in (8) focuses on average side lobe level (SLL) suppression 

whereas the second−term on the right−hand side is used for 

prescribed nulls control.   

Moreover, the fitness, f3 is stated as below:  

𝑓3 = min 1 − dynamic range ratio                   
(9) 

where the dynamic range ratio (DRR) is defined as:                       

DRR =
  max excitation amplitude min excitation amplitude   
           (10) 

In this experiment, we assume the 2N−isotropic radiators are 

placed symmetrically along the x-axis as below 

 

 
 

 

 

 

 

 

 

 
Fig. 1.  Geometry of the 2N-element symmetric linear array 

Theoretically, the array factor (AF) for the azimuth plane in 

Fig. 1 is defined as [1]:  

𝐴𝐹 𝜙 = 2 𝐼𝑛𝑐𝑜𝑠 𝑘𝑥𝑛𝑐𝑜𝑠 𝜙 +𝜑𝑛  

𝑁

𝑛=1

 

           (11) 

where 𝑘 = 2𝜋 𝜆  was the wave number plus 𝐼𝑛 ,𝜑𝑛 , and 𝑥𝑛  

were the excitation amplitude, phase, and location of the 

n−th element, respectively.  Based on (10), the MCS 

multiobjective algorithm was postulated to find the optimal 

𝐼𝑛 ,𝜑𝑛 , and 𝑥𝑛  values of the symmetric linear antenna array 

elements with minimum peak and average SLL and/or nulls 

control.  The following is the postulated pseudo–code of 

MCSPSO hybrid algorithm, which is deployed in this 
experiment: 
begin 
Let iter denote the iteration number of MCSPSO. 
iter ← 1; 
Initialize population of host nests with size n at 
iter=1;  
for each iteration 
Operate the Roulette wheel selection to obtain the 
ʺfittestʺ host nests with size n; 
Generate a new set of solutions (host nests) but keep 
the Current best (say, i) randomly by Lévy flights 
incorporating with inertia weight, w, which controls 
the search ability according to (1); 
Evaluate new solution fitness, Fi according to (4); 
Get a selected set of host nests among n (say, j) and 
calculate its fitness, Fj according to (4); 
if (Fi< Fj) % fitness minimization% 
Replace j by the new set of solutions, i; 
end 
A dynamic fraction probability, Pa of worse nests is 
abandoned and a new nest (set of solution) is built; 
Keep the best nests with quality solutions; 
Let the best nests become as initial particles; 
for each particle 
Calculate fitness value according to (4); 

y 

ø 

1      2  ...  n ... N 

x 
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if the fitness value is better than the best fitness 
value (pbest) in history 
Set current value as the new pbest; 
   end 
end 
Choose the particle with the best fitness value of all 
the particles as the gbest; 
for each particle 
Calculate particle velocity; 
Update particle position according equation; 
end 
Evaluate the updated current fitness value according to 
(4); 
if the new current fitness value is better than the 
fitness of pbest; 
Set current value as the new pbest; 
end 
if the new current fitness value is better than the 
fitness of gbest 
Set current value as the new gbest; 
end 
Keep the best particles with quality solutions; 
Rank the solutions and find the current best particle; 
end 
Post–process results and visualization; 
end 

On the other hand, the following is the proposed pseudo–
code for the MCSGA hybrid algorithm, which is developed 

and validated in this study: 
begin 
Let gen denote the generation number of MCSGA. 
gen ← 1; 
Initialize population of host nests with size n at 
gen=1;  
for each generation 
Operate the Roulette wheel selection to obtain the 
ʺfittestʺ host nests with size n; 
Generate a new set of solutions (host nests) but keep 
the current best (say, i) randomly by Lévy flights 
incorporating with inertia weight, w, which controls 
the search ability according to (1); 
Evaluate new solution fitness, Fi according to (4); 
Get a selected set of host nests among n (say, j) and 
calculate its fitness, Fj according to (4); 
if (Fi < Fj) % fitness minimization% 
Replace j by the new set of solutions, i; 
end 
A dynamic fraction probability, Pa of worse nests is 
abandoned and a new nest (set of solution) is built; 
Keep the best nests with quality solutions; 
Let the best nests become as initial chromosomes; 
Evaluate each individual's fitness according to (4); 
Select pairs to mate from best–ranked individuals; 
Mate pairs at random; 
Apply crossover operator; 
Apply mutation operator; 
for each chromosome 
         Calculate new fitness value according to (4); 
if the new fitness value is better than the best 
fitness value in history 
Set current value as the new best chromosomes; 
   end 
end 
Keep the best chromosomes with quality solutions; 
Rank the solutions and find the current best 
chromosome; 
end 
Post–process results and visualization; 
end 

III. SIMULATION RESULTS 

 

In the first weighted–sum multiobjective simulation, the 

postulated MCSPSO, MCSGA, and MCS algorithms with 

Mantegna’s algorithm as the selected α–stable distribution 

method, host nest (population) = 30, length step factor = 

L/100 or 0.01, and α = 2.0 (Lévy flight Gaussian 

distribution) are examined on the 2N = 10 linear array.  For 

uniformity, all the proposed MCSPSO, MCSGA, and MCS 
algorithms have the dynamic Pa magnitude domain of [0.01 

0.25] and dynamic w magnitude domain of [0.95 1.05], 

respectively.  The proposed algorithms are deliberately 

compared with hybrid GAPSO, and original CS algorithm.  

Precisely, both the MCSPSO and GAPSO optimizers use the 

PSO algorithm with the dynamic random particle velocity 

domain of [–0.1 +0.1]. Moreover, the MCSGA and GAPSO 

algorithms apply the GA optimizer with the gene crossover 

probability, Pc = 90% or 0.9, and gene mutation probability, 

Pm = 10% or 0.1. 

 

According to Fig. 2(a), the normalized radiation pattern for 
the postulated MCSPSO optimizer outperforms other 

competitors by having the lowest average SLL suppression 

and whereas the MCSGA counterpart has the highest 

intensity or the smallest half–power beamwidth (HPBW) of 

the main beam.  Precisely, the MCSPSO algorithm 

suppresses SLL between          –0.97 dB and –15.20 dB 

compared to the conventional array within the [120o 180o] 

and [0o 60o] regions as can be seen in Fig. 2(b). The HPBW 

is the angular separation in which the magnitude of the 

radiation pattern decreases by 50% (or –3 dB) from the peak 

of the main beam.  Fig. 2(c) shows the pattern for MCSGA 
optimizer has the smallest HPBW, which decreases to    –3 

dB at 84.825o and 95.175o.  Hence, the calculated HPBW is 

95.175o – 84.825o = 10.35o.  Furthermore, the postulated 

MCSGA array generates a high directivity of 8.4474 dB 

whereas the MCSPSO counterpart has the slightly smaller 

directivity of                  8.2567 dB, respectively.      
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(b) 

 
(c) 

Fig. 2.  Normalized Pattern for Weighted–Sum MCS Hybrids vs. others                 

 

As displayed in Fig. 3, the MCSPSO hybrid optimizer 

produces the lowest weighted–sum fitness, fmin of 0.6654 that 
leads to the best SLL suppression performance.  It executes 

the largest optimal location fluctuations followed by the 

MCSGA counterpart.  Besides, the MCSPSO–based array 

also generates the lowest optimal amplitude magnitudes for 

all the 2N = 10 symmetric elements as shown in Fig. 4. 

Furthermore, Fig. 5 portrays that the MCSPSO optimizer 

produces the biggest optimal phase fluctuations compared to 

other tested algorithms, respectively.   

 

All the optimal locations, amplitudes, and phases of the 

MCSPSO optimizer produce a better diversity of excitation 

components, which increase the linear array beam scanning 
capability with low side lobes. 

 
Fig. 3.  Optimal Location and Total Fitness Curves for Weighted–Sum 

MCS Hybrids vs. others 

 
Fig. 4.  Optimal Amplitude for Weighted–Sum MCS Hybrids vs. others 

 
 

Fig. 5.  Optimal Phase for Weighted–Sum MCS Hybrids vs. others 
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Table I conscripts the optimal location variations for all the 

tested weighted–sum optimizers for 2N = 10 linear array 

after 1000 iterations.  The MCSPSO hybrid algorithm 

evidently generates the largest position variations compared 
to the conventional array which, is between |±0.1119| and 

|±0.3954| followed by the MCSGA counterpart.  Moreover, 

the MCSPSO array has the lowest optimal excitation 

amplitude which is 0.0844, hence the biggest amplitude 

differences compared to the conventional array as tabulated 

in Table II.  Looking on the aspect of the array excitation 

phase, the MCSPSO hybrid algorithm has the magnitude 

domain of [0o 180o] for all 2N = 10 linear array elements.  

Table III shows that the MCSPSO–based optimizer 

generates the biggest optimal phase deviations compared to 

the conventional array, which are between 34.5848o and 
180o. 

TABLE I 

OPTIMAL LOCATION FOR WEIGHTED–SUM MCS HYBRIDS VS. OTHERS 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS  ±0.4055 ±1.1638 ±1.9590 ±2.7393 ±3.5674 

MCS  ±0.4769 ±1.4518 ±2.4265 ±3.4521 ±4.5170 

MCSPSO  ±0.6119 ±1.7458 ±2.8382 ±4.0097 ±4.8954 

MCSGA  ±0.5429 ±1.6285 ±2.7025 ±3.7869 ±4.8959 

GAPSO ±0.4489 ±1.3770 ±2.3313 ±3.3593 ±4.4227 

TABLE II 

OPTIMAL AMPLITUDE FOR WEIGHTED–SUM MCS HYBRIDS VS. OTHERS 

Element 1 2 3 4 5 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

CS  0.9873 0.9906     0.9881     0.9908     0.9911     

MCS  1.0195     1.0200     1.0271     1.0241     1.0193 

MCSPSO  0.0844 0.0844 0.0844 0.0844 0.0844 

MCSGA  1.0378     1.0375     1.0445     1.0388     1.0418 

GAPSO 0.2000 0.2000 0.2000 0.2000 0.2000 

TABLE III 

OPTIMAL PHASE FOR WEIGHTED–SUM MCS HYBRIDS VS. OTHERS 

Element 1 2 3 4 5 

ϕn 0
o 

144.8614
o
 34.5848

o
 113.2354

o
 19.0016

o
 

CS  0
o
 0

o
 0

o
 0

o
 22.4561

o
 

MCS  0
o
 0

o
 180

o
 180

o
 0

o
 

MCSPSO  180
o
 0

o
 0

o
 180

o
 180

o
 

MCSGA  0
o
 126.4717

o
 31.1931

o
 114.1964

o
 16.7280

o
 

GAPSO 0.2285
o
 144.8629

o
 34.6929

o
 113.3098

o
 19.1002

o
 

 

Secondly, a more substantial simulation is done on the        

2N = 20 linear array with main beam radiates at the desired 

direction angle of 90o and two prescribed interferers at 

direction angles of 35o and 145o, respectively.   In this 

simulation, MCSPSO, MCSGA, MCS and original CS 

algorithms deploy the Mantegna’s α–stable distribution 

method, host nest = 30, length step factor = L/100 or 0.01, 

and α = 2.0 (Lévy flight Gaussian distribution).  All the 

MCS–based algorithms have a dynamic Pa magnitude 
domain of [0.01 0.25] and a dynamic w magnitude domain 

of [0.95 1.05], respectively.    Both the MCSPSO and 

GAPSO optimizers deploy the PSO algorithm with the 

dynamic random particle velocity domain of [–0.1 +0.1].  

Furthermore, the MCSGA and GAPSO algorithms use the 

GA optimizer with the gene crossover probability, Pc = 90% 

or 0.9, and gene mutation probability, Pm = 10% or 0.1. 

 

Fig. 6(a) shows that the MCSPSO–based array outperforms 
other arrays in SLL suppression particularly between the [0o 

83o] and [97o 180o] regions, respectively.  In this case, the 

MCSPSO hybrid algorithm generates the SLL between 

0.047 dB and 3.826 dB below the conventional array as 

depicted in Fig. 6(b).   Moreover, the MCSPSO–based array 

as in Fig. 6(c) demonstrates the highest radiation intensity at 

the main beam with the smallest HPBW of 92o – 88o = 4o 

with the directivity of   11.5831 dB.  This is trailed by the 

MCSGA counterpart with the calculated HPBW of 92.67o – 

87.39o = 5.28o, and the directivity of 11.3074 dB.  In 

addition, Fig. 6(d) shows that the proposed MCSPSO 
algorithm has the significant null mitigation, with the 

measurements of –70.661 dB nearly at 144.96°, whereas          

Fig. 6(e) indicates that the proposed MCSGA counterpart 

has the remarkable null mitigation of –66.126 dB at about 

34.95°. 
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(b) 

 
(c) 

 

(d) 

 
(e) 

 
Fig. 6.  Norm. Pattern for Wgt–Sum MCS Hybrids vs. others (Null = [35°, 

145°]) 

 

Based on Fig. 7, the MCSPSO hybrid–optimizer produces 

the largest optimal location fluctuations with the lowest       
weighted–sum fmin convergence of 1.0994. Besides, the 

proposed MCSPSO hybrid–optimizer generates the lowest 

optimal amplitude measurements for all 2N = 20 array 

elements as shown in Fig. 8.  In another aspect, Fig. 9 

portrays that the MCSPSO based–optimizer produces the 

biggest optimal phase variations for the 2N = 20 linear array 

with two prescribed nulls. 

 
Fig. 7: Optimal Location and Total Fitness Curves for Weighted–Sum MCS 

Hybrids vs. others (Null = [35°, 145°]) 
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Fig. 8.  Opt. Amp. for Wgt–Sum MCS Hybrids vs. others (Null = [35°, 

145°]) 

 
Fig. 9.  Opt. Phase for Wgt–Sum MCS Hybrids vs. others (Null = [35°, 

145°]) 

 

As mentioned earlier, the MCSPSO hybrid algorithm 

executes the largest optimal location oscillations with the 

measurements between |±0.1620| and |±3.1255| compared to 

the conventional array for all 2N = 20 linear array as enlisted 

in Table IV.  In addition, the MCSPSO hybrid algorithm has 

the lowest optimal amplitude deviations compared to the 

conventional array between 0.5427 and 0.5432 for all 2N = 

20 array elements as presented in Table V.  As can be seen 

in Table VI, the MCSPSO hybrid algorithm has the largest 

optimal phase deviations compared to the conventional array 
between 0o and 88.9306o.  In this case, an element has the 

excitation phase of 0o and three elements have the excitation 

phase of 180o.  This indicates that the proposed MCSPSO–

based optimizer is capable to search the optimal solutions 

(optimal phases) to the minimum and maximum extents, 

which improves the scanning capability with low side lobes, 

a narrow main beam, and well–mitigated nulls. 

TABLE IV 

OPT. LOC. FOR WGT–SUM MCS HYBRIDS VS. OTHERS (NULL = [35°, 145°]) 

Element 1 2 3 4 5 

Xn [λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

CS  ±0.4996 ±1.4969 ±2.4978 ±3.4928 ±4.4918 

MCS  ±0.4703 ±1.4108 ±2.3514 ±3.2919 ±4.2325 

MCSPSO  ±0.6620 ±1.9907 ±3.3192 ±4.6481 ±5.9780 

MCSGA  ±0.5499 ±1.6497 ±2.7488 ±3.8493 ±4.9491 

GAPSO ±0.5093 ±1.5102 ±2.5140 ±3.5113 ±4.5116 

Element 6 7 8 9 10 

Xn [λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000   

CS  ±5.4933 ±6.4910 ±7.4846 ±8.4826 ±9.4916 

MCS  ±5.1730 ±6.1136 ±7.0541 ±7.9947 ±8.9353 

MCSPSO  ±7.3084 ±8.6368 ±9.9648 ±11.2959 ±12.6255 

MCSGA  ±6.0489 ±7.1487 ±8.2485 ±9.3460 ±10.4481 

GAPSO ±5.5158 ±6.5135 ±7.5116 ±8.5057 ±9.5117 

TABLE V 

OPT. AMP. FOR WGT–SUM MCS HYBRIDS VS. OTHERS (NULL = [35°, 145°]) 

Element 1 2 3 4 5 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

CS  1.0004 1.0012 1.0009 1.0003 1.0003 

MCS  1.0853 1.0716 1.0213 1.0516 1.0819 

MCSPSO  0.5428 0.5429 0.5427 0.5428 0.5427 

MCSGA  1.0656 1.0656 1.0656 1.0656 1.0656 

GAPSO 0.6666 0.6666 0.6666 0.6666 0.6666 

Element 6 7 8 9 10 

An 1.0000 1.0000 1.0000 1.0000 1.0000 

CS  1.0008 1.0014 1.0002 1.0010 1.0010 

MCS  1.0117 1.0228 1.0986 1.0071 1.0161 

MCSPSO  0.5432 0.5428 0.5428 0.5430 0.5430 

MCSGA  1.0656 1.0656 1.0656 1.0656 1.0656 

GAPSO 0.6666 0.6666 0.6666 0.6666 0.6666 

 

TABLE VI 

OPT.  PHASE FOR WGT–SUM MCS HYBRIDS VS. OTHERS (NULL = [35°, 

145°]) 

Element 1 2 3 4 5 
ϕn 0

o 
179.3495

o
 22.3307

o
 15.5222

o
 131.2926

o
 

CS  0
o 

180
o
 24.3387

o
 17.2827

o
 131.4126

o
 

MCS  0
o 

168.6877
o
 21.0032

o
 14.5994

o
 123.4877

o
 

MCSPSO  0
o 

180
o
 50.3968

o
 36.2676

o
 180

o
 

MCSGA  0
o 

180
o
 24.8503

o
 17.2736

o
 146.1066

o
 

GAPSO 0.0948
o 

179.4246
o
 22.3733

o
 15.5829

o
 131.3076

o
 

Element 6 7 8 9 10 
ϕn 176.3662

o 
31.7982

o
 74.2622

o
 59.5501

o
 55.6673

o
 

CS  180
o 

35.3167
o
 78.8409

o
 67.8246

o
 61.9853

o
 

MCS  165.8818
o 

29.9079
o
 69.8475

o
 56.0100

o
 52.3581

o
 

MCSPSO  180
o 

70.7653
o
 163.1928

o
 146.8616

o
 124.8258

o
 

MCSGA  180
o 

35.3860
o
 82.6413

o
 66.2692

o
 61.9484

o
 

GAPSO 176.3985
o 

31.8015
o
 74.3409

o
 59.6257

o
 55.7297

o
 

 

IV. CONCLUSION 
 

Overall, the proposed MCSPSO stochastic algorithm can 

search further the best host nest (optimal solution) in search 
space.  Hence, this produces a better diversity of optimal 

solution (array element location, amplitude, and phase).  

This is driven by the use of value–added attributes, e.g. 

Roulette wheel selection operator, adaptive w, dynamic Pa, 

and both the velocity and position of particle iterative 

effective updating mechanisms in PSO optimizer.  As a 

result, the MCSPSO hybrid algorithm can control more 

effectively the Lévy flight searching motion (via velocity 

and position updating processes), and through it can locate 

the global best host nest (optimal solution) within           N–

dimensional search space.   
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