
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5326

A Novel Approach to Implement a Shopping Agent

on a Scalable Web Crawler

Poonam Ghuli
1
, Rajashree Shettar

2

Assistant Professor, Department of CSE, R.V. College of Engineering, Bangalore, India 1

Professor, Department of CSE, R.V. College of Engineering, Bangalore, India2

Abstract: Shopping Agent is a kind of Web application software that, when queried by the customer, provides him/her with
the consolidated list of the information about all the retail products relating to a query from various e-commerce sites and

resources. This helps customers to decide on the best site that provides nearest, cheapest and most reliable product that they

desire to buy. This paper aims to develop a distributed crawler to help on-line shoppers to compare the prices of the

requested products from different vendors and get the best deal at one place.

 The crawling usually consumes large set of computer resources to process the vast amount of data in fat e-commerce

servers in a real world scenario. So the alternative way is to use map-reduce paradigm to process large amount of data by

forming Hadoop cluster of cheap commodity hardware. Therefore, this paper describes implementation of a shopping

agent on a distributed web crawler using map-Reduce paradigm to crawl the web pages.

Keywords: Hadoop, map-reduce, shopping bots, Scalable web-crawler

I. INTRODUCTION

 This is an era of Internet. With the incredible growth of

information on the Internet, it's more and more difficult to

find means to manage peta-bytes of data generated every

day. Sorting 10s of tera-bytes of data on one node takes 2

and ½ days but a 100 node cluster will sort it in 35 minutes.

Use of Fat-servers for processing such a huge amount of

data implies high cost. So, today the trend is to use large

number of cheap commodity nodes instead.

 But large number of cheap nodes often led to failures.
Thus, today one needs a new data-parallel programming

model for forming clusters of commodity machines to

process large amount of data generated every day. So, one of

the solution is to use map-reduce framework such as

Hadoop. In the recent years big leaders like Google, Yahoo

have implemented hundreds of special-purpose

computations that process large amounts of raw data, such as

crawled documents, web request logs, etc., to compute

various kinds of derived data, such as inverted indexes,

various representations of the graph structure of web

documents, summaries of the number of pages crawled per
host, the set of most requested queries in a given day, etc.

Most of such computations are conceptually straightforward.

However, the input data is usually large and the

computations have to be distributed across hundreds or

thousands of machines in order to finish in a reasonable

amount of time. The issues of how to parallelize the

computation, distribute the data, and handle failures

conspire to obscure the original simple computation with

large amounts of complex code to deal with these issues. As

a reaction to this complexity, one has to design a new

abstraction that allows one to express the simple

computations that he/she is trying to perform but hides the

messy details of parallelization, fault-tolerance, data
distribution and load balancing in a library. These

abstractions are inspired by the map and reduce primitive

present in Lisp and many other functional languages. The

map-reduce paradigm that uses concept of `cluster

computing' is currently receiving considerable attention,

both in the research and commercial arenas.

 Cluster computing using networked commodity

equipment has become an economic alternative for academic

high performance computing facilities. Clusters aim to

distribute compute intensive tasks over a set of back-end

nodes on a network in order to speed up the processing, and

hence reducing the turnover time for a solution to a complex
problem.

 Typically, a Shopping Agent works by sending out a

crawler to fetch as many documents/products as possible

from different e-commerce sites. This task of crawling

documents is done using distributed computing methods

(that is using the Map-Reduce phase of Hadoop). Another

program, called an indexer, then reads these documents and

creates an index based on the words contained in each

document. The indexer uses a proprietary algorithm to create

its indices such that, ideally, only the best matched, most

meaningful and most popular results are returned for each
query.

 This paper follows an approach of building a crawler

that crawls the actual e-commerce websites for their

products and make a private database of all the products and

their information from different e-commerce sites. This

proposed work gets all its publicly accessible products of the

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5327

e-commerce sites from their own site-map that contains all

the products resource locators for search engine

optimization. We crawl on these site-maps for product

resources and form a database of the information regarding

each of their products.

II. LITERATURE SURVEY

 Shopping Agents have been commercially developed

and programmed ever since the advent of the e-commerce

companies from 1990s. Also a lot of papers have been

published about the ways to setup a full-fledged shopping

agent that can be very reliable, high on performance and

robustness and require as less consumer interaction with the

actual vendor site as possible.

 The basic concepts for building a ShopBot are very

essential in the beginning. In the paper [1], authors provide

us with the basics of the architecture and the strategies to be
used in the building of a ShopBot. The paper included

information about how the information about a particular

product could be mined out from a site using methods of

Heuristic Search, Pattern Matching and Inductive learning

techniques instead of the usual technology of Natural

Language Processing.

 The work mentioned by M Eddahibi et al[2] is

devoted to the design and the development of a shopping bot

with the aim of overcoming the well-known difficulties in

price comparison area. iShopBot is a shopping bot that

combines several technologies, as semantic web, NLP,

Multi-Agent systems and web data mining.
 Facebook recently deployed Facebook Messages, its

first ever user-facing application built on the Apache

Hadoop platform[3]. Apache HBase is a database-like layer

built on Hadoop designed to support billions of messages per

day. This paper describes the reasons why Facebook chose

Hadoop and HBase over other systems and discusses the

application's requirements for consistency, availability,

partition tolerance, data model and scalability. One can see

observations for other companies who are contemplating a

Hadoop-based solution over traditional sharded RDBMS

deployments and how Hadoop could be used more in the
core of the Shopping Agent application for maximum

results.

 For retrieving the data from other servers on the

World Wide Web, we need to develop Web Crawlers [4].

Marc Seeger et al explains in detail the building blocks of a

Web Crawler and how one must go about to program it. The

architecture, design and even some part of the required

implementation is discussed in the paper. The estimated and

actual time is calculated as per the server bandwidth,

database throughput, concurrent users etc. Also, the key

factors tweaking by which the performance could be

improved drastically are discussed and performed.

 MapReduce[5] is a programming model and an

associated implementation for processing and generating

large data sets. Generally this model specify a map function

that processes a key/value pair to generate a set of

intermediate key/value pairs, and a reduce function which
merges all intermediate values associated with the same

intermediate key. Many real world tasks are expressible in

this model, as shown by Jeffery Dean and et al in their

paper.

 The need to analyze structured data for various

business intelligence applications [6] such as customer churn

analysis, social network analysis etc., are well known.

However, the potential size to which such data will scale in

future will make solutions that revolve around data

warehouses hard to scale. As data sizes grow the movement

of data from the warehouse to archives becomes more
frequent. In this paper, the authors present an active archival

solution for data warehouses that makes use of Hadoop

distributed file system (HDFS) to store the data in an always

available and cost-effective manner. We use the method

column-store discussed in this paper to store our crawled

data using Hadoop.

 DCrawler[7] is composed of several agents that

autonomously coordinate their behavior in such a way that

each of them scans its share of the web. An agent performs

its task by running several threads, each dedicated to the

visit of a single host. More precisely, each thread scans a

single host using a breadth-first visit. Thus, dCrawler is
distributed web crawler implemented using multi agents.

 As one can see there are different implementation of

shopping agents[8][9] using semantic web, multi agent

systems, web data mining, NLP etc. But the proposed work

uses an open source distributed framework called Hadoop to

implement the crawler. Hadoop uses map-reduce paradigm

which is based on master-slave concept. The crawler is

responsible for collection of products and their prices from

different e-commerce sites and registering them in database.

The MapReduce paradigm is used for indexing part of data

so that the retrieving of the search result becomes
exponentially faster. Also, the PageRank Algorithm is

implemented so that the most preferred search result is

displayed at the top which is a dream for all the search

providers.

III. PROPOSED WORK

 The proposed work focus on implementing a

Shopping Agent by accessing the sitemaps of e-commerce
sites. To access the sitemap of a particular site by the

proposed bot, the sitemap location must be specified using a

directive in the robots.txt file. The proposed bot will try to

find the following directive in the robots.txt file for a

particular site:

Sitemap: http://yoursite.com/sitemap-location.xml

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5328

 This helps search engines to recognize e-commerce

sites better. Also, the sitemap provides access to a path

where all documents of particular e-commerce sites are

present. Thus, all their HTML pages are accessible to the

consumers via the Search Engines like Google, Yahoo! etc.
Therefore, if one uses a site flipkart.com as a registered e-

commerce site then the sitemap of this site would be in a file

known as robots.txt. One can access the sitemap by

downloading the document flipkart.com/robots.txt. The file

may further contain sublevels of sitemaps for different

products according to the categorization done by the

company web developers. The sublevels keep on going till

we get the final HTML links to the actual products stored in

the e-commerce sites. However, there are also sites that do

not include and describe their sitemaps. Such sites cannot be

accessed by our search bot.
 Therefore, one can browse on sitemaps and get to the

final HTML files that contain the information of actual

products listed on respective sites. From these sites, the

information can be obtained about the product like MRP

(Maximum Retail Price), repository status (In Stock / Out of

Stock / Imported) and their brand / author / publisher etc.

Patterns between the product HTML links can be carefully

extracted. Then use regular expressions to mine the

information about the product from the webpage to the

database created. This mined data can be shown to the

consumers whenever they query for the product. Over the

period of time the data on websites will be updated. There
will be discrepancies between the data stored in database and

the data currently present on the Website. The proposed

work is based on assumption that the status and information

of the product remain constant over some significant amount

of time until the crawler crawls on those pages again.

A. Controller Module

 This module is responsible for controlling the

operations of the crawler. This enables user to enter the start
URL, enter the maximum number of URL’s to crawl, view

the URL’s that are being fetched.

B. Fetcher Module

 This module starts by fetching the page according to

the start URL specified by the user. The module goes to the

World Wide Web, fetches the whole HTML page back to the

system and applies the regular expression search to mine the

data about the page. This process is the crawling phase.

C. Distributed Web Crawler

 The data registered in this project include the title, the

anchor text of the page and other back links that a page has
to other pages on the Internet. The information about the

product is therefore got in the Retail Product Generator

module. The links so found are noted and are further crawled

upon in the next pass according to the Breadth First traversal

algorithm. These links are also recorded for the purpose of

providing the pages their Page Rank.

Fig 1. Overview of the system

D. Retail Product Generator module

 This information together with the information of the

last crawled page is sent together to the parser module. In

case the HTML file of the current page to be crawled is too

bulky in size, we scan only the limited part of the page due
to hardware constraints and move on to crawl the next page

in line. The fetcher module retrieves all the links in a

particular page and continues doing that until the maximum

number of URL’s is reached.

E. Parser Module

 This module parses the URL’s fetched by the Fetcher

module and saves the contents of those pages to the disk.

The information submitted by the fetcher module is used

here so as to actually save the page (offline search) and its

contents onto the disk of the system. It is shown back to the
user in results page when queried. The fetcher module also

submits the information to determine the page rank of the

last crawled page. Parser module is the one that does the

actual calculation of the page rank of that page according to

the Page Rank algorithm.

F. Page Rank algorithm

Therefore, here pages are indexed so that the most relevant

pages get displayed on the top of the results page when the

system is queried. It treats all the pages as HTML pages and

saves it to the system with the information submitted about

the page by the fetcher module and calculates the page rank
for it. The calculation of page rank is done effortlessly using

Map-Reduce paradigm. The information about the page is

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5329

mapped to individual systems in the cluster. The systems in

the cluster then generate their individual page rank for the

page and finally the NameNode reduces these bits of

information submitted by the slave nodes and calculates the

gross Page Rank for the page. The parser module is also
responsible for the registering the individual products from

the resource pages of the e-commerce sites which happens in

the Product Register module.

G. Product Register module

The product and its other necessary information like brand /

author / publisher, MRP, repository status (In Stock / Out Of

Stock / Imported) and the resource locators are registered in

this module in separate columns of the database. The parser

module also has to take extra care about the database

connections and be sure at all times not to open multiple
connections, not to overburden the connection bandwidth, to

take care of the possible exceptions that might occur as a

result of any hardware or software malfunction.

 IV. RESULTS AND ANALYSIS

 Since the shopping agent uses Hadoop map-reduce

concept, its performance lies in its cluster setup. i.e

performance increases with increasing number of nodes in
the cluster. The results are analyzed to see how the total

running time of the task scales with the number of

computing nodes. And it shows that the running time will be

affected by varying the mapper/reducer assignments per

node. The results are analyzed as follows.

A. Varying number of computing nodes

 As shown in Fig. 2, the number of nodes in a hadoop

cluster significantly affects running time of the processes.

The analyzed result shows that the running time reduces

from over 200 minutes to less than 30 minutes when the

number of computing nodes is increased from 3 to 13. The
overhead in managing mapper/reducer also affects

performance.

Fig 2. Time vs. number of nodes

B. Varying number of mappers/reducers per node

1) Varying number of reducers per node

 Fig 3. shows the running time when the number of

reducers per node is varied. Here the number of nodes and

number of mappers per node are fixed. We find that running
3 reducers together on each of the node minimizes the total

running time. Although, in a single job, increasing the

number of reducers per node can reduces the time for the

reduce stage, running time will be increased sharply in map

and shuffle stage. As a result, the total running time will

increase with the increase in number of reducers. This is

because of the I/O bottleneck for concurrent access of data.

Fig 3. Time vs. number of reducers per node

Fig 4. Time vs. number of mappers per node

2) Varying number of mappers per node

 The fig 4 shows the total running time when the
number of mappers per node is varied while fixing number

of reducers as 7 for each node. We have found in our

experiments that the performance is not affected by varying

the number of mappers per node.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 5330

V. CONCLUSION

 This paper implements a specific application to get

details about a product like price, ratings or any specification

from all e-commerce websites at one place. The work focus

on getting the cost details about books available at different
e-commerece websites like Flipkart, Infibeam etc. This

becomes convenient for the user to get details about different

books and compare their prices from different websites at

one place to get a better deal. This paper describes the

implementation of a Shopping Agent in a distributed

environment. During its implementation, we found that the

crawling of the information on the e-commerce sites is tricky

because of the inconsistency of placing of information about

the product in the document and the denial of access

permissions to those. Also, a distributed system crawling on

the server was faster compared to the crawling done by the
master system alone. The shopping agent will work more

effectively and precisely if there was a way to link some sort

of human interaction to the whole application. This could be

done by giving ratings to the products or adding more e-

commerce sites that the consumers find reliable and fast on

delivery. Also reviews could be taken into consideration for

the as a reference to other consumers who wish to buy a

similar product.

 REFERENCES
[1] Robert B. Doorenbos, Oren Etzioni, Daniel S, “A Scalable

Comparison-Shopping Agent for the World-Wide Web”, ACM 1997

[2] M Eddahibi, A Nejeoui and C Cherkaoui. Article: Towards an

Intelligent and Deeply Automated Shopping Bot. International Journal

of Computer Applications 45(24):21-27, May 2012. Published by

Foundation of Computer Science, New York, USA.

[3] “Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan

Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik

Ranganathan, Dmytro Molkov, Aravind Menon, Samuel Rash,

Rodrigo Schmidt, Amitanand Aiyer, “Apache Hadoop Goes Realtime

at Facebook”, SIGMOD, 2011.

[4] Marc Seeger, “Building Blocks of a Scalable Web Crawler”,

Computer science and Media, 2010

[5] Jeffrey Dean, Sanjay Ghemawat. “MapReduce: simplified data

processing on large clusters”, OSDI, 2004.

[6] Rajeev Gupta, Himanshu Gupta, Ullas Nambiar, Mukesh Mohania,

“Efficiently querying archived data using Hadoop”, CIKM, 2010.

[7] Sunil M Kumar and P.Neelima. Article: Design and Implementation

of Scalable, Fully Distributed Web Crawler for a Web Search Engine.

International Journal of Computer Applications 15(7):8–13, February 2011.

[8] Hyung Seok Lee, Dong Soo Jin, Jemi Choi, “Effects of Information

Intermediary Functions of Comparison Shopping Sites on Customer

Loyalty”, Journal of Internet Banking and Commerce, August 2011.

[9] Khaled W. Sadeddin, “Online shopping bots for electronic commerce:

The comparison of functionality and performance” Int. J. Electronic

Business, 2002.

[10] Yun Wan, Satya Menon, Arkalgud Ramaprasad “A Classification of

Product Comparison Agents” International Conference on Electronic

Commerce ’03, October 2003.

