
 ISSN 2278 – 1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 66

An Evaluation of Log File and Compression Mechanism
Raj Kumar Gupta

1
, Rashmi Gupta

2

 Computer Science Department,

Technocrats Institute of Technology, Bhopal (M.P.)

Abstract— with worldwide development of multi-national

company’s communication infrastructure required to increase.

As the size of these computer networks increases, it becomes

more and more difficult to monitor, control, and secure them.

Networks consist of a number of diverse devices, sensors, and

gateways which are often spread over large geographical areas.

Each of these devices produces log files, which need to be

analyzed and monitored to provide network security and satisfy

regulations. current information systems are replete with log

files, created in multiple places (e.g., network servers, database

management systems, user monitoring applications, system

services and utilities) for multiple purposes (e.g., maintenance,

security issues, traffic analysis, legal requirements, software

debugging, customer management, user interface usability

studies). Log files in complex systems may quickly grow to huge

sizes. Often, they must be kept for long periods of time. For

reasons of convenience and storage economy, log files should be

compressed. However, most of the available log file compression

tools use general-purpose algorithms (e.g., Deflate) which do not

take advantage of redundancy specific for log files. Presented

paper describes an optimal framework for log-file compression.

Keywords— Log file, Cyber Forensic, File compression

I. INTRODUCTION

The storage requirement for operational data is increasing as

increase in the computing technology. Current computer

networks consist of a myriad of interconnected,

heterogeneous devices in different physical locations (this is

termed a distributed computing environment). Computer

networks are used by many different sized corporations,

educational institutions, small businesses and research

organizations. In many of these networks, monitoring is

required to determine the system state, improve security or

gather information. Examples of such scenarios are: large

global corporate networks, which consist of many different

mail servers, web servers, file servers and other machines

spanning different countries which need to be monitored to

protect valuable information and distributed mail servers

which log to a central location. In these scenarios, large

quantities of information need to be gathered for analytical or

archival purposes. This requires the reduction of the quantity

of data to minimize bandwidth utilization, maximize

throughput and reduce storage space requirements .The path

with the purpose of visitors take through your pages and

visitors follow within your site is clear if the log file contains

an entry for every page viewed .Log files are used to record

the activities that go in and out of a particular server. The

log file must contain a person ID such as a login to the

server or to the user’s own computer. Most web sites do

not require users to log in, and most web servers do not

make a “back door” request to learn the user’s login

identity on his/her own computer. The log file does

provide information about the requesting host. This

information might identify a single-user computer,

enabling unique identification for episode tracking. More

often it is an IP address temporarily assigned by an

Internet service provider (ISP) or corporate proxy server to

a user’s TCP/IP connection to your site, preventing unique

identification. This paper is organized as follow: Section I

gives the introduction of the log file as cyber crime

evidence. Section II is helpful to understand the

background of log file. Section III, IV, V, VI &VII

explains the log file compression issue, type & technique.

Section VIII is helpful to understand the background of

related work. Section IX explains the proposed framework

and at last section X concludes the paper and followed by

the references.

II. LOG FILE

Log files are excellent sources for determining the health

status of a system and are used to capture the events

happened within an organization’s system and networks.

Logs are a collection of log entries and each entry contains

information related to a specific event that has taken place

within a system or network [1]. Many logs within an

association contain records associated with computer

security which are generated by many sources, including

operating systems on servers, workstations, networking

equipment and other security software’s, such as antivirus

software, firewalls, intrusion detection and prevention

systems and many other applications. Routine log analysis

is beneficial for identifying security incidents, policy

violations, fraudulent activity, and operational problems.

Logs are also useful for performing auditing and forensic

analysis, supporting internal investigations, establishing

baselines, and identifying operational trends and long-term

problems [2].A log file is used to track the operation

performed by any user simply by storing messages

 ISSN 2278 – 1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 67

generated by an application, service, or an operating

system. For example web servers maintain a log files

record for every request made to the server. Log file is

generally in American standard code for information

interchange code file format having a .log extension. Log

file is also generated by different functioning logs and

alert services [3].

Initially, logs were used for troubleshooting problems, but

nowadays they are used for many functions within most

organizations and associations, such as optimizing system

and network performance, recording the actions of users,

and providing data useful for investigating malicious

activity [1]. Logs have evolved to contain information

related to many different types of events occurring within

networks and systems. Within an organization, many logs

contain records related to computer security; common

examples of these computer security logs are audit logs

that track user authentication attempts and security device

logs that record possible attacks [6].

With the world wide deployment of network servers,

service station and other computing devices, the number of

threats against networks and systems have greatly

increased in number, volume, and variety of computer

security logs and with the revolution of computer security

logs, computer security log management are required[1].

Log management is essential to ensure that computer

security records are stored in sufficient detail for an

appropriate period of time. Log management is the process

for generating, transmitting, storing, analysing, and

disposing of computer security log data. The fundamental

problem with log management is effectively balancing a

limited quantity of log management resources with a

continuous supply of log data. Log generation and storage

can be complicated by several factors, including a high

number of log sources; inconsistent log content, formats,

and timestamps among sources; and increasingly large

volumes of log data [1, 4, and 5]. Log management also

involves protecting the confidentiality, integrity, and

availability of logs. Another problem with log

management is ensuring that security, system, and network

administrators regularly perform effective analysis of log

data.

 Figure1: Example of firewall log

 ISSN 2278 – 1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 68

Figure2: Example of web log

III. LOG FILE COMPRESSION

This section motivates the need for data reduction and

explains how data compression can be used to reduce the

quantity of data. It also discusses the need for the approaches

which can be used and the role of log files. In many

environments, tracked logs can happen very often. As a result,

there is a huge amount of data produced this way every day.

And often it is necessary to store them for a long period of

time. Regardless of the type of recorded logs, for reasons of

simplicity and convenience, they are usually stored in plain

text log files. Both the content type and the storage format

suggest that it is possible to significantly reduce the size of log

files through lossless data compression, especially if

specialized algorithm was used. The smaller, compressed files

have the advantages of being easier to handle and saving

storage space.

IV. TYPES OF COMPRESSION

Lossless compression algorithms frequently use statistical

redundancy in such a way as to represent the sender's data

more concisely without error. Lossless compression is

possible as most real-world data has statistical redundancy

[10]. For instance, in English text, the letter 'e' is much more

used than the letter 'z', and the probability that the letter 'q'

will be followed by the letter 'z' is very tiny. Another kind of

compression called lossy data compression or perceptual

coding is possible in this scheme some loss of data is

acceptable. In general a lossy data compression will be guided

by research on how people perceive the data in question. For

example, the human eye is more sensitive to slight variations

in luminance than it is to variations in color. JPEG image

compression works in part by "rounding off" some of this

less-important information. Lossy data compression provides

a way to obtain the best fidelity for a given amount of

compression.

Lossless compression schemes are reversible so that

the original data can be reconstructed, while lossy schemes

accept some loss of data in order to achieve higher

http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Perceptual_coding
http://en.wikipedia.org/wiki/Perceptual_coding
http://en.wikipedia.org/wiki/Luminance
http://en.wikipedia.org/wiki/JPEG

 ISSN 2278 – 1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 69

compression. However, lossless data compression algorithms

will always fail to compress some files; indeed, any

compression algorithm will necessarily fail to compress any

data containing no discernible patterns. Attempts to compress

data that has been compressed already will therefore usually

result in an expansion, as will attempts to compress all but the

most trivially encrypted data.

In practice, lossy data compression will also come to a point

where compressing again does not work, although an

extremely lossy algorithm, like for example always removing

the last byte of a file, will always compress a file up to the

point where it is empty.

V. LOSSY COMPRESSION

Lossy image compression is exercised in digital cameras, to

increase storage capacity with negligible degradation of

picture quality. Similarly, DVDs use the lossy MPEG-2 Video

codec for compression. Compression of individual speech is

often performed with more specialized methods, so that

"speech compression" or "voice coding" is sometimes

distinguished as a separate discipline from "audio

compression". Different audio and speech compression

standards are listed under audio codes. Voice compression is

used in Internet telephony, for example while audio

compression is used for CD ripping and is decoded by audio

players.

VI. LOSSLESS COMPRESSION

The Lempel–Ziv (LZ) compression methods are the most

popular for lossless storage. DEFLATE is a variation of LZ

which is optimized for decompression speed and compression

ratio [11], therefore compression can be slow. DEFLATE is

used in PKZIP, gzip and PNG. LZW (Le-mpel–Ziv–Welch) is

used in GIF images. Also worth mentioning are the LZR (LZ–

Renau) methods, which serve as the basis of the Zip method.

LZ methods utilize a table-based compression model where

table entries are substituted for repeated strings of data. For

most LZ methods, this table is generated dynamically from

earlier data in the input. The table itself is often Huffman

encoded (e.g. SHRI, LZX). A current LZ-based coding

scheme that performs well is LZX, used in

Microsoft's CAB format. The very best modern lossless

compressors use probabilistic models, such as prediction by

partial matching. The Burrows–Wheeler transform can also be

viewed as an indirect form of statistical modelling.

VII. COMPRESSION TECHNIQUES

Compression programs exploit the redundancy in files to

create smaller files which can be decompressed to produce the

original file. There are many different types of compressors.

They may be block-based, dividing the data into blocks and

running an algorithm on each block; dictionary based, where

they replace words with references to a dictionary; or they

may use complex statistical models to predict future

characters (statistically-based compressors) be performed to

improve the possibility of compression. These may be

transformations (such as Burrows-Wheeler transform) or

normalizations (such as Branch Call Jump (BCJ), where jump

targets in executable files are normalized before compression)

of data. Compression may also be performed using the

distribution of characters in the data to create statistical codes

(such as Arithmetic and Range coders), new fixed length

codes or variable length codes (usually prefix free codes such

as Huffman coding). Compressors often use adaptive

algorithms where the statistics used are updated by the

encoders and decoders as they encode the data source and

decode the encoded data respectively.

VIII. RELATED WORK

The Comprehensive Log Compression (CLC) method

provides a powerful tool for any analysis that inspects data

with lot of redundancy. Only very little a priori knowledge is

needed to perform the analysis. The method provides a

mechanism to separate different information types from each

other. The CLC method identifies frequent repetitive patterns

from a log database and can be used to emphasize either the

normal course of actions or exceptional log entries or events

in the normal course of actions. This is especially useful in

getting knowledge out of previously unknown domains or in

analyzing logs that are used to record unstructured and

unclassified information[7].Szymon Grabowski, Sebastian

Deorowicz Presented a specialized lossless Apache web log

pre-processor [8] and test it with combination of several

popular general-purpose compressors. The test results show

the proposed transform improves the compression efficiency

of general-purpose compressors on average by 65% in case of

gzip and 52% in case of bzip2.they presented two relatively

simple off-line pre-processing schemes for web log

compression. Meng-Hang Ho, Hsu-Chun Yen design and

implement a dictionary-based compressed pattern matching

algorithm [9].Takes advantage of the dictionary structure

common in the LZ78 family. With the help of a slightly

modified dictionary structure, we are able to do ‘block

decompression’ (a key in many existing compressed pattern

matching schemes) as well as pattern matching on-the-fly,

resulting in performance improvement as our experimental

results indicate. On other hand The Lempel-Ziv-Welch (LZW)

compression algorithm is widely used because it achieves an

excellent compromise between compression performance and

speed of execution. A simple way to improve the compression

without significantly degrading its speed is proposed, and

experimental data shows that it works in practice. Even better

results are achieved with an additional optimization of

“phasing in” binary numbers. The better compression is

http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/DVD
http://en.wikipedia.org/wiki/MPEG-2
http://en.wikipedia.org/wiki/Video_codec
http://en.wikipedia.org/wiki/Video_codec
http://en.wikipedia.org/wiki/Speech_encoding
http://en.wikipedia.org/wiki/Audio_codec
http://en.wikipedia.org/wiki/Internet_telephony
http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv
http://en.wikipedia.org/wiki/DEFLATE_(algorithm)
http://en.wikipedia.org/wiki/PKZIP
http://en.wikipedia.org/wiki/Gzip
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/LZW
http://en.wikipedia.org/wiki/LZR
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/LZX_(algorithm)
http://en.wikipedia.org/wiki/Cabinet_(file_format)
http://en.wikipedia.org/wiki/Probabilistic_algorithm
http://en.wikipedia.org/wiki/Prediction_by_partial_matching
http://en.wikipedia.org/wiki/Prediction_by_partial_matching
http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform

 ISSN 2278 – 1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 70

achieved by a coding technique, the harder it becomes to

extract each percent of additional compression. It has not been

easy to find easily implementable methods for improving the

performance of LZC, especially when they impose an

additional constraint that the execution time requirements

should not be severely affected. We have selected two ways of

improving LZC (the UNIX compress command). One, a

method of loading the dictionary at a faster rate, has not been

used before. The other, a method to phase in increased lengths

of binary numbers gradually, is not original but is not

currently used with LZC. Together, these two compression

methods achieve substantial improvements, especially on

shorter files where the dictionary does not normally have a

chance to fill to an extent that achieves good compression

performance.

IX. PROPOSED FRAMEWORK

A multi-tiered log file compression solution shall be proposed.

Every of the three tiers addresses one notion of redundancy

(as shown in figure:3).The first tier handles the resemblance

between neighboring lines. The second tier handles the global

repetitiveness of tokens and token formats. The third tier is

general-purpose compressor which handles all the redundancy

left after the previous stages. The tiers are not only optional,

 ISSN 2278 – 1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 71

but each of them is designed in several variants differing in

required processing time and obtained compression ratio. This

way user with different requirements can find combinations

which suit them best. We propose five processing schemes for

reasonable ratios of compression time to log file size

reduction. A collection of scripts to determine the

compression ratios, compression times and decompression

times when using data compression was compiled. These

scripts were used to run tests on a collection of log files and

the obtained statistics recorded.

X. CONCLUSION

Current information systems are full up with log files, often

taking a considerable amount of storage space. It is reasonable

to have them compressed, yet the general purpose algorithms

do not take full advantage of log files redundancy. The

existing specialized log compression schemes are either

focused on very narrow applications, or require a lot of human

assistance making them impractical for the general use. We

have suggested and will try for a fully reversible log file

transform capable of significantly reducing the amount of

space required to store the compressed log. The transform will

be presented in five variants aimed at a wide range of possible

applications, starting from a fast variant for on-line

compression of current logs (allowing incremental extension

of the compressed file) to a highly effective variant for off-

line compression of archival logs.

REFERENCES

[1] Nikhil Kumar Singh, Deepak Singh Tomar, Bhola

Nath Roy, “An approach tounderstand the end user

behavior through log analysis” International Journal

of Computer Applications (0975 – 8887), August

2010.

[2] Karen Kent and Murugiah Souppaya, “Guide to

Computer Security Log Management”, Computer

Security Division Information Technology

Laboratory National Institute of Standards and

Technology Gaithersburg, 2006

[3] Muhammad Kamran Ahmed, Mukhtar Hussain and

Asad Raza “An Automated User Transparent

Approach to log Web URLs for Forensic Analysis”

Fifth International Conference on IT Security

Incident Management and IT Forensics 2009.

[4] Carrier, B.D., Spafford, E.H “Defining Digital Crime

Scene Event Reconstruction” Journal of Forensic

Sciences, 49(6). Paper ID JFS2004127,2004

[5] Stephenson. P, “Application Of Formal Methods To

Root Cause Analysis of Digital Incidents”,

International Journal of Digital Evidence, 3(1) ,2004

[6] P. K. Sahoo ,Dr. R. K. Chottaray, “The Role of Audit

Logs in Cyber Security” International Journal of

Science and Advanced Technology (ISSN 2221-

8386) Volume 1 No 7 September 2011

[7] Kimmo H¨at¨onen, Jean Fran¸cois Boulicaut, Mika

Klemettinen, Markus Miettinen , and Cyrille Masson,

“Comprehensive Log Compression with Frequent

Patterns” , pp. 360–370, 2003. Springer-Verlag

Berlin Heidelberg 2003

[8] Szymon Grabowski, Sebastian Deorowicz, “Web

Log Compression” Institute of Computer Science,

Silesian Technical University, Gliwice, Poland

[9] Meng-Hang Ho , Hsu-Chun Yen , “A Dictionary-

based Compressed Pattern Matching Algorithm”,

Department of Electrical Engineering, National

Taiwan University, Taipei 106, Taiwan, Republic of

China.

[10] S. Read-Miller and R. A. Rosenthal. Best Practices

for building a SecurityOperations Center.

Computer Associates White Paper, April 2005.

[11] J. Babbin, D. Kleiman, E. Carter Jr.and J. Faircloth,

and M. Burnett. “Security Log

Management.Syngress” Rockland, Knox County,

Maine, USA, 2006.

