
 ISSN 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 62

Review of Algorithms for Web Pre-fetching and

Caching
 Sandhaya Gawade

1
, Hitesh Gupta

2

PG scholar in Department of Computer Science and Engineering ,PCST, Bhopal

Professor in computer science and engineering, PCST Bhopal

ABSTRACT— Increasing popularity of the World Wide Web over the past few years has imposed a significant traffic burden upon the

internet. The World Wide Web may be considered to be a large distributed information systems providing access to shared data. A mass

research has done to improve the response time of web based system as the information is distributed over a geographical location. Web

caching and pre-fetching are two important approaches used to reduce the noticeable response time perceived by users. An ideal pre-fetching

caching scheme is a system that able to predict the next (number of next) requests and pre-load those into the cache .The pre-fetched objects

are stored in a local cache to reduce the latency time. This is paper presents survey of algorithms for handling a web caching and pre-

fetching

 Keywords—Prediction, Pre-fetching, Web Caching

I. INTRODUCTION

The www can be considered as a large distributed information

system where users can access to shared data objects. Its

usage is inexpensive and accessing information is faster using

the www than using any other means. The www has

documents that keep to a wide range of interests, for example

news, education, scientific research, sports, entertainment,

stock market growth, travel, shopping, weather and maps [10].

 Predictive web prefetching refer to the mechanism of

deducing the forthcoming page accesses of a client based on it

past accesses. Web prefetching is the process of deducing

client’s future request for web document and getting that

document in to the cache, before an explicit request is made

for them. Prefetching capitalizes on the spatial locality

present in request streams, that is, correlated reference for

different document and exploit the client’s idle time, i.e., the

time between successive request the main advantage

employing prefetching is that it prevents band-width

underutilization and hides part of latency . Web prefetching

acts complementary to caching; it can significantly improve

cache performance and reduce the user perceived latency [7].

 The Web caching aims to improve the performance of

web-based systems by storing and reusing web objects that are

likely to be used in the near future. It has proven to be an

effective technique in reducing network traffic, decreasing the

access latency and lowering the server load .Web caching has

focused on the use of historic information about web objects

to aid the cache replacement policies. These policies take into

account not only information about the web-document access

frequency, but also document sizes and access costs. This past

information is used to generate estimates on how often and

how expensive it is for the objects saved in the cache to be

accessed again in the near future [8].An important advantage

of the www is that many web servers keep a server access log

of its users. These logs can be used to train a prediction model

for future document accesses. Based on these models, it can

obtain frequent access patterns in web logs and mine

association rules for path prediction. Incorporate our

association-based prediction model into proxy caching and

prefetching algorithms to improve their performance [9].

Recently, a few researches used mining techniques to explore

the browsing behaviors of users in web services [3].

Web prefetching involves two main steps. First, predictions

are made based on previous experience about user’s accesses

and preferences, and the corresponding hints are provided.

Second, the prefetching engine decides what objects are going

to be prefetched. The prefetching engine can be located at the

web browser or at an intermediate web proxy server. The web

server can perform the predictions. they can also be done by

the web browser or by an intermediate proxy . In this work, it

is assumed that the web server provides hints and the web

client prefetchs them [13].

II. BASIC PRINCIPLE

Web prefetching is a technique for reducing web latency

based on predicting the next future web objects to be accessed

by the user and prefetching them during times. If finally the

user requests any of these objects, it will be already on the

client cache. This technique takes advantage of the spatial

locality shown by the web objects [4,14].

 The prefetching technique has two main

components: The prediction engine and the prefetching engine.

The prediction engine runs a prediction algorithm to predict

http://www.ijarcce.com/

 ISSN 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 63

the next user’s request. The prefetching engine decide to

prefetch them or not depending on some conditions like

available bandwidth .Each engine can work at any element of

the web architecture [14].

 The predictions (PD) are the number of objects. It

predicted by the prediction engine. prefetch request (PR)

represents the number of objects prefetched. The number of

objects prefetched that are requested later by the user is the

prefetch hit (PH). The opposite of the prefetch hit is the

prefetch miss (PM), which represents the number of

prefetched objects that were never demanded by the user (i.e.,

extra traffic). Finally, user request (UR) refers to the total

amount of objects requested by the user (prefetched or not),

and the user request not prefetched (URnP) represents the

number of objects demanded by the user that were not

prefetched [4].

Fig. 1. Web prefetching type of request

As shown in fig. 1, the set of prefetch request (PR) is a

subset of the prediction set (PD). The result of the intersection

between the user request set (UR) and Prefetch request set is

the prefetch hit subset (PH). This subset is the main factor to

reduce the perceived latency. In Fig. 1, A represents a user

request not prefetched (URnP), which is a user request neither

predicted nor prefetched. B is a prefetch request made by the

prefetching engine that is requested later by the user, thus

becoming a prefetch hit. C is a prefetch miss (PM) resulting

from an unsuccessful prediction that was prefetched but never

demanded by the user. This request becomes extra traffic and

extra server load.

A. Web Prefetching examples

It is easy to visualize the following three prefetching

instances in fig. 2 prefetching between web clients and web

servers, prefetching between web clients and proxy caches,

and prefetching between proxy caches and web servers [16].

Fig. 2. Prefetching possibilities

Reduce latency: A Proxy server saves the results of all the

requests from various clients for a certain amount of time. For

instance, consider a case where both users x and y access the

www through a proxy server. Let us assume that user x

requests for a certain web page say page 1. Sometime later,

user y also requests the same page. Instead of forwarding the

request to the web server where page 1 actually resides, which

can be a time-consuming operation, the proxy server simply

returns this page from its cache where all the downloaded

pages are retained before being over written by new arrivals.

Since proxy server is often on the same network as the user,

this is a much faster operation, thereby reducing the perceived

latency to some extent [12].

III. Prediction Model Techniques

A. The Prediction Algorithm based on Maximum-Weight-

Matrix

The basic idea is to train the machine (caching system) to

learn the request pattern from the client side little by little. The

learning process [2] is by prediction on next request following

the current one. If the prediction is proved to be correct, the

corresponding probability is increased. Otherwise, the

probability matrix is not changed. In visualization, the training

algorithm can be said correct or incorrect. Define the map f

as the following:

f(n) = c + (s − i + 1)d,

n = 0, 1, . . ,N − 1, i = 1, 2, . . . s,

here n represents page with index n, i is the index such that

page n is in ci and c, d are grater than equal to 0 are constants.

We will refer the function f as weight step function, or simply

the step-function. Every element is a probability from one

User Request (UR)

Prediction (PD)

Prefetching Request (PR)

A C B

URL 1

URL 2

URL 3

URL 1

URL 2

URL 3

URL 1

URL 2

URL 3

Web

page

 Web

Client

Caches

Web servers

http://www.ijarcce.com/

 ISSN 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 64

page to another. Therefore, all elements are in the range of (0,

1). We modify the probability matrix by eliminating the

common denominator for each element. The obtained new

matrix is called pre-fetching weight matrix. The initial state of

the weight-matrix is (1) N×N. The idea is to simply add a M-

W-Matrix (Maximum-weight-matrix) to reduce the search

time for the highest weight parameter in a row. At any time,

the (1 × N) M-W-matrix contains the biggest parameter at

each row and the page index. The M-W Matrix may be

updated when a pre-fetching successes and the weight-matrix

is updated by applying the step-function. In prefetching cache

size 75% and Systems hit rate 70%.

B. Dynamic web pre-fetching

In dynamic web pre-fetching technique, subsequent links

are pre-fetched only if bandwidth usage of existing network is

less than a predefined threshold. For each web page request,

the retrieved page is parsed to identify the subsequent links

and URL’s corresponding to these links are searched in the

hash table to get its weight information. Intelligent agents

monitor the bandwidth usage, user’s preferences and hash

table weights to identify the number of URLs to be pre-

fetched.. The main features incorporated into the dynamic pre-

fetching model are listed below [5].

In dynamic prefetching cache hit ratio 40% –75% and

latency is reduced 20% – 63%.

C. The Matrix Pre-fetching Algorithm

Our idea of predicting is based on the requesting

probability to decide which page should be pre-fetched

following the current page. The page with the maximum

probability is selected as the predictive page that together with

the requested page are transferred to the cache. Both pages

reside in cache when the request and pre-fetching process are

completed. Once the predictive page is proved to be correct in

the next request, the pre-fetching is said to be a success,

otherwise, it is said a failure. Page request probabilities are

recorded as elements of a matrix and are assumed to be

uniformly distributed at the beginning (the machine does not

know any of them). These probabilities are updated when a

new request arrives. The request possibilities are not changed

until a success happens. In the case of a prediction success,

some of elements in the matrix are updated based on some

calculation. As the probabilities in the matrix are modified

dynamically (the process of learning), the pre-fetching always

picks up the web page corresponding to the maximum

probability [6].

 In prefetching cache size 10% of the server and Hit

rate system without pre-fetching 35.33% system pre-fetching

one page, 55.61%.system pre-fetched two pages, 63.58%.

D. Semantic prefetching

“Semantics”, hidden in web documents. From certain point

of view, the semantics of web document is already considered

in history-based prediction. In that case, this semantics is

derived from user interest assuming that users passing the

same URL-graph are interested in the same thing semantically.

They do not consider real semantics of document, however.

As semantic prefetching we understand prefetching based on

preferences of past retrieved documents in semantics, rather

than on the chronological relationships between URL accesses.

Semantically based prefetching tries to extract a semantic

description of a document and asks server to provide pages

with similar semantics, with the same so called “semantic

locality”. Based on the document semantics, this approach is

capable of prefetching documents whose URLs have never

been accessed [15].

E. Prediction-based Web Caching

The prediction-based web cache model [11] consists of 3

modules. The ARS log analyzer (LA) is automating processes

of identifying usage pattern of client requests. For example,

with web cache log information, web usage pattern can be

analyzed to identify potential attribute of web objects which

has been accessed for classifying usage request pattern. The

analyzer also report average response latency and hit/missed

statistics to be put in decision maker module name web access

miner. The mining module (MM) is an importance engine to

classify user requests to explore weight value for rule table

which support predict and prefetch future request web objects

into web cache server. Prefetching Module (PM) has

prefetching engine to check resource usage status of web

cache server. The research scope also proposed prefetch

concept to enhance with web cache management policy. The

detail of such technique will be described in next section. Web

cache manager holds the category of replacement policies by

enhancing with prefetching. In prefetching hit rate 40- 80% of

the system.

F. Adaptive Pre-fetching Scheme Cluster-based System

Our adaptive scheme consists of three components; Double

Prediction-by-Partial-Match Scheme (DPS), Adaptive Rate

Controller (ARC) and Memory Aware Request Distribution

(MARD).The DPS scheme to obtain the relation information

of objects and increase the hit rate of pre-fetched data. Also, it

proposes the ARC scheme to perform an efficient

management of pre-fetch memory in cluster environments.

Finally, it suggests the MARD to distribute web workload to

improve the efficiency in web pre-fetch [1].

 First, we propose a dynamic web prediction scheme

called DPS. Web access patterns are dynamic depending on

the location of a client. When web objects are stored in an

intermediate node, requests to those cached objects do not

http://www.ijarcce.com/

 ISSN 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 2, April 2012

Copyright to IJARCCE www.ijarcce.com 65

reach the web server. The DPS scheme solves the problem by

providing the addictiveness that handles the client’s random

access pattern. Second, ARC that provides an adaptive pre-

fetch rate at run time. There is a trade-off between consuming

memory space and the performance of a web cluster system in

modern web frameworks. In multiprocessing environments,

web processes allocate memory by their needs. However, we

cannot provide the system with unlimited memory, so

aggressive pre-fetch schemes can interfere with demand

requests from the same client or other clients. For improving

the performance of prefetch schemes, the ARC scheme

prefetches web objects depending on the memory status.

 Our last MARD which distributes incoming

requests to the prefetch-enabled backend servers efficiently.

Locality based distribution is commonly accepted to improve

the performance using the locality of incoming requests.

However, non-uniform distribution can use up the memory at

the selected backend server and an aggressive prefetch scheme

also consumes the memory for prefetching useless objects at

the selected server. It can cause the delay in the overall web

cluster system. MARD avoids the skewed distribution of

requests at the web cluster system [1].

 In prefetching scheme improves the performance

of web cluster system up to 40% in various web workloads.

IV. CONCLUSION

Web caching and prefetching are well known strategies for

improving the performance of internet systems. In this paper,

a comprehensive survey of web prefetching and caching is

presented. It describes various techniques that reducing

successful latency time with the aim of reducing these

negative effects at the server side to control the traffic and its

impact on the system.

.

REFERENCES

 [1] Heung Ki Lee, Baik Song an, and Eun Jung Kim, “Adaptive

Prefetching Scheme Using Web Log Mining in Cluster-based Web”,

International Conference On Web Services, IEEE, 2009, pp. 903-910.
[2] Wenying Feng and Karan Vij, “Machine Learning Prediction and Web

Access Modeling”, IEEE, 2007, pp. 607-612.
[3] Yin-Fu Huang , Jhao-Min Hsu,“Mining web logs to improve hit ratios of

prefetching and caching”, Elsevier, 2006.

[4] Johann M´arquez, Josep Dom`enech, Jos´e A. Gil and Ana Pont, “An
intelligent technique for controlling web prefetching costs at the server side”,

International Conference IEEE/WIC/ACM, 2008, pp. 669-676.

[5] Achuthsankar S. Nair, Jayasudha J.S., “Dynamic Web Pre-fetching
Technique for Latency Reduction”, IEEE, 2007 pp. 202-206.

[6] Wenying Feng and Hua Chen ,“A Matrix Algorithm for Web Cache Pre-

fetching” , International Conference IEEE/ACIS, 2007, pp. 788-794.
[7] C. Umapathi and J. Raja,“A Prefetching Algorithm for Improving a web

cache Performance”, Journal of application science , Asian Network

scientific information,2006, pp. 3122-3127.
[8] Qiang Yang and Haining Henry Zhang, “Web-Log Mining for Predictive

Web Caching”, IEEE 2003, pp. 1050-1053.

[9] Q. Yang, H. H. Zhang and T. Li, “Mining web logs for prediction models
in www caching and prefetching”, International Conference on ACM, 2001.

[10] Sarina Sulaiman, Siti , Ajith Abraham, Shahida Sulaiman, “Web

Caching and Prefetching: What, Why, and How?” IEEE, 2008, pp. 1-8.
[11] Areerat Songwattana,“Mining Web logs for Prediction in

Prefetching and Caching”, IEEE 2008, pp. 1006-1011.

[12] Payal Gulati, A. K. Sharma, Amit Goel, Jyoti Pandey, “A Novel
Approach for Determining Next Page Access”, IEEE, 2008, pp. 1109-1113.

[13] B. de la Ossa, J. A. Gil, J. Sahuquillo and A. Pont,“Improving Web

Prefetching by Making Predictions at Prefetch”, IEEE, 2007, pp. 21-27.
[14] Johann M´arquez, Josep Dom`enech, Jos´e A. Gil and Ana Pont, “A Web

Caching and Prefetching Simulator”, IEEE, 2008, pp. 346-350.

 [15] Lenka Hapalova, Ivan Jelinek, “Semantic web access prediction”,
International Conference on Computer Systems and Technologies-

CompSysTech’07,ACM,2007.

 [16] S. V. Nagaraj, “Web Caching and Its Applications”, Kluwer Academic

Publishers,2004.

http://www.ijarcce.com/

