
ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 3, May 2012

 Copyright to IJARCCE www.ijarcce.com 126

Two Level Nested Loops Tiled Iteration Space Scheduling

By Changing Wave-Front Angles Approach
AliReza Hajieskandar, Shahriar Lotfi, Simin Ghahramanian

 Department of Electrical and computer engineering, Islamic Azad University, Iran

 Department of Computer Science, University of Tabriz, Tabriz, Iran

 Sama Technical and Vocational Training College, Islamic Azad University, Iran

ABSTRACT— Most of scientific applications need high speed and powerful computations. Using the computational potential of multiple

processors enables us to achieve this goal. This factor as well as the story of former sequential programs that were so costly in generation,

culminated at the invention of a tool named as “super-compiler” to automatically convert sequential code into parallel code. Super

compilers identify the hidden parallelism inside programs and convert sequential programs into parallel ones. As most of computational

programs incorporate nested loops, the parallel execution of these loops increases the running speed of programs. So the parallelization of

nested loops is crucial for increasing the execution speed of programs. One of the conversion stages of sequential nested loops into parallel

ones is to schedule the tiled iteration space. Regarding the fact that, so far the block and cyclic approaches have been introduced , in this

paper the wave-front approach and wave-angle shifts have been incorporated in the block and cyclic approaches in order to reduce the

execution time of two-level nested loops.

 Keywords— nested loops, Iteration Tiled Space, Scheduling, Wave Fronts.

I. INTRODUCTION

Many computational programs use nested loops. Programs
run faster if the loops run in parallel. Once upon a time in past,
writing these programs were very costly. In order to avoid
these costs a tool named as “super-compiler” is used to convert
these programs to parallel ones. . Therefore nested loops
parallelization is a major focus for fast programs. The
conversion of nested loops into parallel ones is accomplished
through the following orderly stages: In stage I, as two
instructions can run in parallel only when there is no data
dependency between them, the data dependencies in nested
loops will be analyzed and extracted accordingly. Data
dependencies originate from the arrays used inside loops
.Therefore if the instruction S executes before the instruction T
and generates some data that the instruction T will use it
certainly, T is called a data dependent or shortly a dependent
on S. In stage II, in order to achieve better parallelization, to
decrease inter-processor connections and hence to optimally
distribute the dependent iterations of nested loops for being
executed in processors, iteration space is tiled. A set of loop
iterations running in one processor is called a tile. In stage III,
based on the shape and size of produced tiles a desired parallel
code is generated for the iteration space of stage II. Finally in
the stage IV the tiled space of the former stage is scheduled by
using the wave-front approach. In fact, the tiles are assigned to
the processors in a way that the time needed for executing all
of them is minimized accordingly. In other words termination
time for the last tile of final wave is shortened as much as
possible. This paper focuses mainly on the fourth stage,
parallelization.

The remainder of this paper is organized as follow: in
Section II Scheduling problem definitions was presented. In
section III we review the basic concepts of the problem in
question. Section IV explains former related works in the
context. Section V describes our proposed approach. Section
VI and VII focus on the assessment of experiments and
conclusions as well as a guideline for future works
respectively.

II. THE PROBLEM

In this section, inspired by an example, I will explain the

issue of scheduling the tiled iteration space for nested loops.

Consider the nested loops of following example:

For i:= 0 To 7 Do

 For j:= 0 To 5 Do

 A[i, j]:= A[i-1, j] + A[i, j-1];

 EndFor

EndFor

Reference to array in this example, creates data dependency

among loop iterations. After analyzing the data dependency,

the iteration space can be tiled in order to reduce inter-

processor connections. In fact a tile is a set of iteration points

with many data dependencies implying the need for being

executed in one processor[12]. So the iteration space

 SSS JJJ 21 , and the tiled space of the mentioned example

is like Fig.1 in which points represent loop iterations while

directed edges account for data dependencies as well as their

dependent source and destination.

ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 3, May 2012

 Copyright to IJARCCE www.ijarcce.com 127

Fig. 1 Iteration space for above nested loop and it's Tiled Iteration Space

In this problem we want to assign a certain number of

processors to the existing tiles in the tiled space, so the inputs

of our problem are the tiled iteration space and a certain

number of specified processors. In this tiled space, each tile

 SSS JJJ 21 , has two prerequisite tiles as SSS JJJ 21 ,1 and

 1, 21 SSS JJJ . It means that in the related tiled space there

is an edge from two prerequisite tiles toward the

corresponding tile. So while the execution of prerequisite tiles

has not been finished completely,
SJ cannot start execution.

For optimum scheduling of tiled space two constraints are

postulated: (1) balanced loads among processors (2) The least

possible cost for inter-processor connections when scheduling.

The nearly identical figures of tiles (tiles are created

incompletely in borders) and the execution of each tile in one

processor satisfies the first constraint. In order to reduce inter-

processor connecting cost, the tiles with higher

communication cost should be assigned to the same

processors so that with the zero connection time, the time

needed for executing tiles minimizes.

We denote the cost of communication and message sending

between the current tile and the prerequisite ones with

Vcomm . Since each tile connects to two tiles of different

dimensions, so we use two parameters as Vcomm(1) and

Vcomm(2) . Vcomm(1) stands for the communication

volume of
SJ with the neighboring tile in respect for the first

dimension SJ while Vcomm(2) stands for the

communication volume of
SJ with the neighboring tile for

the second dimension SJ . As long as
SJ and its

neighboring tiles are executed over different processors we

have to tolerate the existing costs as the problem input but for

the case of identical processors , the communication cost will

be zero. Regarding the fact that processors are fully-connected

in style; i.e. each processor is directly connected to other

processors, the connection cost among all processors is

identical.

The other input of problem i.e. Vcomp accounts for the

execution cost of each tile in an individual processor. Given

that this parameter is identical for the execution of all

processors the termination time of tile
SJ is computed

through the following equation.

)1(
)2()(

),1()(
)(

comm

S

comm

S

S

VJtimecompletion

VJtimecompletion
MaxJtimecompletion

The total time duration for executing all current scheduled

tiles, known as "makespan" is given by the following equation:

The underlying objective of tiled space schedule is to find a

scheme for assigning the available processors to the tiles

which have the shortest makespan time. So the output of

problem is an assignment scheme for the tiled iteration space

and its makespan.

III. DATA DEPENDENCY AND THE NESTED LOOPS ITERATION

SPACE TILING, AN OVERVIEW

The first stage in parallelization of nested loops is to

analyze the data dependency problems; two instructions can

be executed simultaneously only if there is no data

dependency between them. Generally speaking the T

instruction is called S - data dependent or shortly S-

dependent if both of instructions refer to the same memory

location, S instruction is executed before T instruction, if there

is an execution path between the two instructions and in the

time interval between S and T instructions nothing is recorded

in the commonly referred location.

In order to achieve better parallelization and cache locality

of reference in individual processors and extraction of great

parallelization in multiprocessors the iteration space of nested

loops is tiled. A set of loop iterations which must run in an

individual processor is called a tile. The purpose from tiling is

to reduce communication volume among processors and

consequently to optimally distribute the dependent nested

loops for being executed in the processors which exchange

messages with each other. A sample tiling method is depicted

in the below diagram [4].

Fig. 2 An example of Iteration Space Tiling

IV. RELATED WORKS

Many approaches have been introduced for scheduling of

the iteration space of nested loops each somehow trying to

reduce the execution time of loop iterations in a parallel

manner [1, 6, 8, 11, 13, 15, 16, 18, 19, 21, 22, 24 and 25]. In

)2(

,))(max(

SpaceIterationTiled

JJtimecompletionmakespan sS

ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 3, May 2012

 Copyright to IJARCCE www.ijarcce.com 128

some methods, in order to minimize the overall execution time

of iterations, the communication time of processors overlaps

with the time of internal calculations of processors [3, 7 and

17]. Also some other approaches inspired by the wave-front

method, eliminate the need for communicating of many

processors and assign dependant caches to the same processor.

In other approaches, the critical path for the task graph

resulted from the loop iterations’ space is calculated and in

order to obtain load balancing, other non-critical iterations are

distributed among processors according to their data

dependency. Actually, the critical path includes all loop

iterations which should be executed in a certain time. In this

procedure, the earliest time of loops’ execution as well as the

latest makespan of loop iterations are computed and the order

of iterations over the critical path is specified accordingly. In

this procedure the layers of critical path is specified in which a

sum of executable iterations exist in parallel. The non-critical

iterations are distributed among processors to preserve load

balancing.

Andronikos et. al. in [1] suggested a multinomial algorithm

for efficient scheduling of uniform dependency loops by

outlining precise criteria for a number of engaged processors

in which they identified upper and lower limits for optimum

number of required processors which minimizes the total

execution time and then performs a binary search between the

two borders.

Most of approaches which concentrated on optimum

scheduling originate from hyper-plane methods. The main

objective of these methods is to classify computations into

well-defined groups called wave or hyper-plane by using

linear transformations .All iterations existing inside a loop can

be executed simultaneously. Darte in [5] showed the

optimality of this method. Moldovan, Shang and Darte et al

benefited the hyper-plane method to explore an optimal linear

schedule by using Diophantine equations, linear programming

in subspaces [23] and accurate programming [5]. Hence more

computations will be rendered in parallel.

Finally, some approaches try to reduce the overall duration

time of parallel execution for nested loops by changing wave

angles. In these approaches, the appropriate angle for waves is

calculated in a way that the required number of processors for

tiles’ parallel execution never exceeds the total sum of

processors.

Athanasaki et. al. in [2] introduced the following four

methods of the cyclic assignment schedule, the mirror

assignment schedule, the cluster assignment schedule and the

retiling schedule for scheduling of tiled iteration space to

clustered system with a given number of SMP(Symmetric

Multi-Processors) nodes and applied two execution schemes

including the overlapping execution scheme and non-

overlapping execution scheme.

Doritos et. al. in [7] introduced a low-cost algorithm which

using geometrical calculations generates the typical schemes

consisting of iteration subsets which can be executed earlier

in a certain k-time phase.

Lotfi and Parsa in [20] suggested a new executable

algorithm over non-rectangular n-dimensional tiles in irregular

iteration spaces for deriving and scheduling of parallel waves.

In order to derive efficient parallel waves they assumed that

all tiles with identical coordinate sums locate in one wave and

they used the modified block scheduling for assigning

parallelepiped tiles of every wave to different processors.

We in the former articles [9 and 10] using the wave-front

method introduced two genetic-based algorithms. One of the

methods with angle shift and the other without it can

culminate at the proper scheduling of the problem in question.

V. PROPOSED STRATEGY

The proposed approach of BCAALS
1
 is based on the wave-

front method and works by incorporating the wave notion into

the BlockH
2
 , the BlockV

3
, the CyclicH

4
, the CyclicV

5

methods and due alterations trying to minimize the makespans

of nested loops’ execution. In fact, a wave consists of tiles

without data dependency which can be executed in parallel. If

waves are drawn over the iteration loop, they form an angle

which its shift culminates at the minimization of required

processors in number, the optimization of their loading

balance and consequently the optimization of makespan for

scheduling. In the rest, the calculation method for makespans

by adding the angle concept into the wave-front method and

the proposed algorithm is discussed with an example.

A. The pseudo code for computing the overall execution time

of tiles in a tiled space based on the wave-front method

and inspired by the angle concept

To do this the pseudo code of Figure 3 is used. This

algorithm is based on the wave-front method. The waves

should be executed sequentially. So in this algorithm the

overall execution time equates he sum of tiles’ execution

times over waves. Presumably, at the wave beginnings

processors are synchronized and between two successive

waves the transmission time of messages are overlapped

possibly. Also for identifying the number of wave in which

the tile SSS JJJ 21 , is located, the Relation No.3 is used in

which a and b stand for angle coefficients. (The wave angle is

represented by two coefficients of a and b) These coefficients

were taken as 1 in the former works which account for a 45

degree angle indeed.

1 Block and Cyclic Algorithm with Angle for Loop Scheduling
2 Horizontal Block
3 Vertical Block
4 Horizontal Cyclic
5 Vertical Cyclic

ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 3, May 2012

 Copyright to IJARCCE www.ijarcce.com 129

)3(j ×b+i×a=j)front(i,-Wave of Number

Fig. 3 The pseudo code for computing the overall execution time of tiles in a tiled space

As observable, there are four kinds of tiles: 1- tiles located

in the origin of coordinates 2- tiles located alongside the

horizontal axis 3- tiles located alongside the vertical axis 4-

internal tiles.

B. An explanatory example for the proposed algorithm

In order to get a better understanding consider the

following example and its iteration space.

Example 2:

Fig. 4 An Example with its corresponding Tiled Iteration Space

To analyze the problem and discuss the proposed

algorithm first we test the above example with the horizontal

ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 3, May 2012

 Copyright to IJARCCE www.ijarcce.com 130

Block , Vertical Block , the Horizontal Cyclic and Vertical

Cyclic(CyclicV) methods (Fig 5-a). Then we incorporate the

angle concept which in fact is our proposed approach. In

part b of Figure 5, the angle waves are shifted which in fact is

our proposed algorithm.

Fig. 5 Previous and proposed Strategy

As noted before, two constrains should be postulated for

optimum scheduling of tiled space (1) loading balance among

processors and (2) low communication cost among processors

in scheduling time. The total sum of the present tiles over the

largest wave in Figure 5 reveals that this number is 4 for the

former approach while it is 2 for the current proposed

approach. Therefore one can conclude that wave angle shift

decreases the required number of processors for scheduling

the tiled iteration space which in turn decreases the loading

balance among processors. So changing wave angles satisfies

the first constraint and similarly the second constraint is

automatically captured by the engagement of the four

mentioned methods because they are designed in nature to

reduce communication volume among processors when

scheduling.

VI. ASSESSMENT AND PRACTICAL RESULTS

In order to verify the proposed algorithm BCAALS and to

contrast its results versus the former algorithms, a software

application is designed and implemented in Delphi 7. The

engaged algorithms for comparing the new proposed

algorithm include the horizontal Block, the Vertical Block, the

Horizontal Cyclic and the Vertical Cyclic (CyclicV)

algorithms.

A. Proposed Algorithm assessment

As the proposed algorithm is definitive (not random), and

its yielding solutions are the same for a given problem, so the

proposed algorithm is completely (100%) stable and the

generated solutions are also 100% reliable.

B. The comparison of the proposed algorithm with former

works

In this section, by conducting various tests of mixed types,

the quality of generated solutions by the proposed algorithm is

compared against those of former ones. Notably, because of

page paucity, only some of tests are shown here. The testing

results as well as the related parameters of each test are

tabulated in Table I.

ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 3, May 2012

 Copyright to IJARCCE www.ijarcce.com 131

TABLE I

THE OUTCOME RESULTS FROM IMPLEMENTING THE PROPOSED ALGORITHM AND FORMER ALGORITHMS

For better comparison, the obtained results of performed

tests are depicted in Diagram no.1

ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 3, May 2012

 Copyright to IJARCCE www.ijarcce.com 132

Fig. 6 The comparison of results obtained by running the proposed algorithm and former algorithms

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, taking the benefits of angle shifts, an
algorithm was proposed which due to its potential in
improving the loading balance among processors and
consequently optimizing of their usage, minimized the
execution time of tiles. As he results show, the proposed
algorithm (BCAALS) yielded better results in 93% of cases
relative to the Block or Cyclic methods.

On the stability and reliability of the proposed algorithm it
just suffices to note that as the proposed algorithm is not
stochastic, its generated solutions are stable and completely
(100%) reliable.

We believe that future works can focus on the
generalization of this algorithm for problems with more
dimensions (3-D or even more), using random algorithms for
solving this problem , the parallel implementation of random
algorithms such as the Genetic Algorithm and mixing the
Genetic Algorithm with other intelligent searching algorithms
such as Learning Automata.

REFERENCES

[1] T. Andronikos, M. Kalathas, F. M. Ciorba, P. Theodoropoulos, and G.

Papakonstantinou, An Efficient Scheduling of Uniform Dependence
Loops, Computing Systems Laboratory, Department of Electrical and

Computer Engineering, National Technical University of Athens,

Zographou Campus, Athens, Greece, pp. 1-10, 2004.
[2] M. Athanasaki, E. Koukis, and N. Koziris Scheduling of Tiled Nested

Loops onto a Cluster with a Fixed Number of SMP Nodes, 12th
Euromicro Conference on Parallel, Distributed and Network-Based

Processing, IEEE, 2004.

[3] M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, N. Koziris, and P.
Tsanakas, Hyperplane Grouping and Pipelined Schedules: How to

Execute Tiled Loops Fast on Clusters of SMPs, Journal of

Supercomputing, Vol. 32, pp. 197-226, 2005.

[4] D. K. Chen And P. Ch. Yew, An Effective Execution of Non-Uniform
Do Across Loops, IEEE, pp. 1-6, February 1995.

[5] A. Darte, L. Khachiyan, and Y. Robert, Linear Scheduling Is Nearly

Optimal, Par. Proc. Letters, pp. 73-81, 1991.
[6] A. Darte, Y. Robert, and F. Vivien, Scheduling and Automatic

Parallelization, Birkhäuser, 2000.

[7] I. Drositis, T. Andronikos, A. Kokorogiannis, G. Papakonstantinou,
and N. Koziris, Geometric Pattern Prediction and Scheduling of

Uniform Dependence Loops, In 5th Hellenic European Conference on

Computer Mathematics and its Applications - HERCMA 2001, Athens,
2001.

[8] G. Goumas, A. Sotiropoulos, and N. Koziris, Minimizing Completion

Time for Loop Tiling with Computation and Communication
Overlapping, IEEE, pp. 1-10, 2001.

[9] A. Hajieskandar, Sh. Lotfi, Using an Evolutionary Algorithm

for Scheduling of Two-Level Nested Loops, International Conference
on Information and Electronics Engineering, pp. 100-105, May 2011.

[10] A. Hajieskandar, Sh. Lotfi, Parallel Loop Scheduling Using an
Evolutionary Algorithm, 3rd International Conference on Advanced

Computer Theory and Engineering, pp. 314-319, August 2010.

[11] L. Lamport, The Parallel Execution of Do Loops, Comm. of the ACM,
Vol. 37, No. 2, pp. 83-93, February 1974.

[12] Sh. Lotfi and S. Parsa, Parallel Loop Generation and Scheduling,

Journal of Supercomputing, Vol. 50, No 3, pp. 289-306, 2009.
[13] N. Manjikian and T. S. Abdelrahman, Scheduling of Wavefront

Parallelism on Scalable Shared-Memory Multiprocessors, Department

of Electrical and Computer Engineering, University of Toronto,
Toronto, Canada, pp. 1-10, 1996.

[14] D. E. Maydan, J. L. Hennessy and M. S. Lam, Efficient and Exact Data

Dependence Analysis, ACM SIGPLAN'91 Conference on
Programming Language Design and Implementation, Toronto, Ontario,

Canada, pp. 1-10, June 1991.

[15] D. I. Moldovan and J. Fortes, Partitioning and Mapping Algorithms
into Fixed Size Systolic Arrays, IEEE Transactions on Computers, Vol.

C-35, No. 1, pp. 1-11, 1986.

[16] T. W. O’Neil, Techniques for Optimizing Loop Scheduling, Ph. D.
Thesis, The Graduate School of the University of Notre Dame, Indiana,

2002.
[17] S. Parsa, and Sh. Lotfi, A New Approach to Parallelization of Serial

Nested Loops Using Genetic Algorithms, Journal of Supercomputing,

Vol. 36, No. 1, pp. 83–94, 2006.

ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 3, May 2012

 Copyright to IJARCCE www.ijarcce.com 133

[18] S. Parsa, and Sh. Lotfi, A New Genetic Algorithm for Loop Tiling,

Journal of Supercomputing, Vol. 37, No. 3, pp. 249–269, 2006.

[19] S. Parsa, and Sh. Lotfi, Code Generation and Scheduling for
Parallelization of Multi-Dimensional Perfectly Nested Loops, 12th

International CSI Computer Conference (CSICC'07) Shahid Beheshti

University, Tehran, Iran, pp. 20-22, February 2007.
[20] S. Parsa and Sh. Lotfi, Wave-Fronts Parallelization and Scheduling,

IEEE, 4th International Conference on Innovations in Information

Technology (Innovations’07), Dubai, UAE, pp. 382-386, November
18-20, 2007.

[21] D. L. Pean, H. T. Chua, and CH. Chen, A Release Combined

Scheduling Scheme for Non-Uniform Dependence Loops, Journal of
Information Science and Engineering, Vol. 18, pp. 223-255, 2002.

[22] F. Rastello, and Y. Robert, Automatic Partitioning of Parallel Loops

with Parallelepiped-Shaped Tiles, IEEE Transactions on Parallel and
Distributed Systems, Vol. 13, No. 5, pp. 460-470, May 2002.

[23] W. Shang and J. A. B. Fortes, Time Optimal Linear Schedules for

Algorithms with Uniform Dependencies, IEEE Transactions on
Computers, Vol 40, No. 6, pp. 723-742, 1991.

[24] J. Xue, On Tiling as a Loop Transformation, Parallel Processing

Letters, Vol. 7, No. 4, pp. 409-424, 1997.
[25] Ch. T. Yang, and K. Cheng, An Enhanced Parallel Loop Self-

Scheduling Scheme for Cluster Environments, Journal of

Supercomputing, Vol. 34, pp. 315-335, 2005.

Biography

AliReza Hajieskandar received the B.Sc.

in Software Engineering from Islamic Azad

University shabestar Branch, Iran and the

M.Sc. degree in Software Engineering from

Islamic Azad University Qazvin Branch,

Iran. He is preceptor of Software

Engineering at the Islamic Azad University

Bonab Branch. His research interests

include compilers, super-compilers, parallel processing,

evolutionary computing and algorithms.

Shahriar Lotfi received the B.Sc. in

Software Engineering from the University

of Isfahan, Iran, the M.Sc. degree in

Software Engineering from the University

of Isfahan, Iran, and the Ph.D. degree in

Software Engineering from Iran

University of Science and Technology in

Iran. He is Assistant Professor of

Computer Science at the University of Tabriz. His research

interests include compilers, super-compilers, parallel

processing, evolutionary computing and algorithms.

Simin Ghahramanian received the B.Sc.

in Software Engineering from Islamic

Azad University shabestar Branch, Iran,

she is studying in M.Sc. degree in

computer system architecture.she is

preceptor of Software Engineering at the

Sama Technical and Vocational Training

College, Islamic Azad University, Bonab

Branch. His research interests include parallel processing,

Network Computing and NOC Testing

	OLE_LINK5
	OLE_LINK6
	OLE_LINK1
	OLE_LINK2
	OLE_LINK11
	OLE_LINK12

