
ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7433

Design of Software Inspection tool

Rakhee Kundu
1
, Umesh Kulkarni

2

Computer Engineering, ARMIET, Affiliated to Mumbai University, India1

Computer Engineering, VIT, Affiliated to Mumbai University, India2

Abstract: Although software inspection has led to improvements in software quality, many software systems continue
to be deployed with unacceptable numbers of errors, even when software inspection is part of the development process.

The difficulty of manually verifying that the software under inspection conforms to the rules is partly to blame. We

describe the design and development of a tool designed to help alleviate this problem. The tool provides mechanisms

for inspection of software by exposing the results of sophisticated whole-program static analysis to the inspector. The

tool computes many static-semantic representations of the program, forward and backward slicing and dependence

factors. Whole-program pointer analysis is used to make sure that the representation is precise with respect to aliases

induced by pointer usage. Views on the dependency and related representations are supported. Queries on the

dependence graph allow an inspector to answer detailed questions about the semantics of the program. Facilities for

openness and extensibility permit the tool to be integrated with many software-development processes. The main

challenge of the approach is to provide facilities to navigate and manage the enormous complexity of the dependence

graph. Which will test the correctness of the program by identifying some of the rules .Whether particular variable in

the program is working or malfunctioning, Checking the malfunctioning by the dependency factors by using backward
and forward slicing. This will identify the checkpoints and not to identify the errors and which area a particular

checkpoint is getting effected will be reflected.

Keywords: Abstract Syntax Tree, Program Dependence Graph (PDG), Predecessor, Slicing, Successor.

I. INTRODUCTION

Software inspection is a technique for detecting problems

in software early in the lifecycle. It was introduced by

Fagan in 1976 [16] and, since then, it has attracted support

as a software engineering best practice. A key phase in the
software-inspection process is when the inspectors attempt

to find defects by scrutinizing the code in detail. Often, a

team will have a checklist of generic and domain-specific

rules that must be followed, and the team’s task is to find

violations of those rules. For example, in a checklist used

at NASA for programs written in C [32], one generic rule

is “Does code that writes to dynamically allocated

memory via a pointer first check for a valid (nonzero)

pointer?”Unfortunately, it can be very difficult to

manually find violation of this kind of rule. It may be easy

to find violations for small programs, but, even for
moderately sized programs with multiple pointer

indirections, the complexity can quickly thwart manual

attempts at under-standing. This paper describes the

design and implementation of a tool for helping inspectors

navigate this complexity, by providing a means for a user

to reason about the deep structure of the code at a high

level o detail This tool, named CodeSurfer TM , provides

access to and answers queries about—a range of different

representations of a program, all created by performing

advanced static analysis on the program. These

representations go far beyond those providedby traditional

program-browsing tools and include an accurate call
graph, the results of whole-program pointer analysis, and

the program’s system dependence graph.

This project is the design and implementation of a C

program inspection tool for helping inspectors navigate

this complexity, by providing a means for a user to reason

about the deep structure of the code at a high level of

detail. This tool aims slicing as a main ingredient for

software inspection provides access to and answers queries

about—a range of different representations of a program,

all created by performing advanced static analysis on the

program. These representations go far beyond those
provided by traditional program-browsing tools and

include the program dependence graph. The standard

queries on the program dependence graph such as

predecessors and successors, slicing backward and

forward are of much use in program understanding.

This project describes a language-independent program

representation—the program dependence graph and

discusses how program dependence graphs, together with

operations such as program slicing, can form the basis for

powerful programming tools that address the problems

listed above.

II. QUERIES FOR SOFTWARE INSPECTION

Many of the features of have been designed to aid

program understanding and, as such, can be useful for

detailed software inspection. This section describes some

of the queries available and their application to software

inspection.

A. Variable-Usage Information

Each point in the program may access some variables and
modify other variables, each possibly through pointers. In

order to create the data-dependence graph, the set of

variables used and defined at each program point are first

computed and associated with the vertex that represents

that program point.

This information is easily accessed by the user

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7434

B. Predecessors/Successors

It is natural for a user attempting to understand a program

to ask “How could variable x have gotten its value here?”
or alternatively “Where is the value generated at this point

used next?” The predecessors and successors operations

provide the answers to these questions.

These queries can be posed with respect to the control

dependences, the data dependences, or both. A program

point’s data predecessors are the points where the

variables used at that point may have gotten their values.

The data successors are the points where the variables that

were modified at that point are used.

The fact that the query is performed directly on the

dependence graph guarantees that the result will be correct

with respect to the dataflow properties of the program.

III. DEPENDENCE GRAPHS

Dependence graphs have applications in a wide range of

activities, including parallelization , optimization , reverse

engineering, program testing , and software assurance .

Fig. 1 shows the dependence-graph representation for a

simple program with two procedures. This section briefly
describes dependence graphs and how they are built.

A Program Dependence Graph (PDG) is a directed graph

for a single procedure of a program. The vertices of the

graph represent constructs such as assignment statements,

call sites, parameter ,and condition branches.

Figure 1. Program Dependance Graph

An edge between the vertices indicates either a data

dependence or a control dependence. The data-dependence
edges indicate possible ways in which data values can be

transmitted. For example, in Fig. 1, there is a data

dependence edge between the vertex for i=1 and the vertex

for while (i < 11), which indicates that a value for i may

flow between those two vertices.

A control-dependence edge between a source vertex and a

destination vertex indicates that the result of executing the

source vertex controls whether or not the destination

vertex is reached. For example, in Fig. 1, there is a control

dependence edge between the vertex for while (i<11) and
the vertices for the two call sites on the function add. A

System Dependence Graph (SDG) is a directed graph

consisting of interconnected PDGs , one per procedure in

the program. Inter procedural control-dependence edges

connect procedure call sites to the entry points of called

procedures. Inter procedural data-dependence edges

represent the flow of data between actual parameters and
formal parameters (and return values). Nonlocal variables,

such as global, file statics, and variables accessed

indirectly through pointers, are handled by modeling the

program as if those variables are passed in and out as

parameters to the program’s procedures. Each nonlocal

variable used in a function, either directly or indirectly, is

treated as a “hidden” input parameter and, thus, gives rise

to additional program points. These serve as the function’s

local working copy of the nonlocal variable. If the variable

is modified in the function, then it has an associated output

parameter as well.

IV. DEPENDANCE GRAPH QUERIES

A number of types of queries on the dependence graphs

can be issued. The backward slice from a program point P

returns all points that may influence whether control

reaches P and all points that may influence the values of
the variables used at P when control reaches P. The

forward slice from P includes all program points affected

by an assignment or branch performed at P . A program

chop between a set of source program points S and a set of

target program points T returns the set of program

elements that can transmit effects from S to T (and, hence,

reveals how S can affect the state of the program at T).

These query algorithms can be implemented safely using

simple graph reachability. However, they can be greatly

improved by filtering out answers that correspond to

certain infeasible executions of the program. In particular,

a path that enters a procedure through a call site can only
exit the procedure by going back to the call site from

where it came. We refer to queries on the dependence

graph as being inter procedurally precise if they accurately

model the call-and-return semantics of procedure calls. A

path p between two vertices s and t is only considered to

be a valid connection between s and t if the word spelled

out by concatenating the labels on the edges is a word in

L. It is a simple matter to define a context-free grammar

that models the call-and-return semantics of a valid

execution path of a program. Let each call site in the

program be given a unique index ranging from 1 through
N. Let each inter procedural edge leaving from call site i

be labeled .i, and each inter procedural edge returning to

call site i be labeled .i. Let all other edges be labeled x.

V. REPRESENTATIONAL APPROACH OF

THE MODULES

Parse

Source

Program

Prepare

Abstract

Syntax

Tree (AST)

Preparation of

PDG

Slicing

GUI

Figure 2. Representational Approach Of Modules

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7435

As shown in the figure 2 above a source program which is

to be inspected is given as an input using GUI, the

program is parsed and abstract syntax tree is constructed.
The PDG is generated to understand the main flow of the

program and then by slicing the program using forward,

backward , predessor or successor approach the code is

segmented for further analysis. Then CFG algorithm is

applied on it to obtain dominator tree and post dominator

tree . The control dependence graph is constructed to

undertstand the dependancing of a particular variable in

the entire program and its linkage with other functions and

methods. Using this tool it will be easy to find out bugs in

the program and their influence on the program control

flow will be understood.

VI. SYSTEM ANALYSIS AND DESIGN
The following figure shows the working nature of the

system.

System Analysis & Design

• DFD- Level 0

Input Source

Program

Program

Dependence

Graph

Predecessor

Slicing

Successor

Figure 3. Top Level View Of The System

This figure 3 describes the top level view of the system.

That is how the system is going to deal with the source

code provided to it. First the input is analyzed to produce
the intermediate representation in the form of the graph

and than subsequent operations is carried out on this

representation to produce the result.

System Analysis & Design

Program dependence

Graph

Input

program

Lexical Analysis

Tokens

Syntax analysis

Syntax directed translation

Code generation

CFG DFG

Control

Dependence

Analysis

Data Dependence

analysis

Predecessor Slicing

sucessor
Figure 4. System Analysis and Design

VII. ALGORITHMS AND RELATED THEORY
A. Computation of Basic Blocks

A basic block is a sequence of consecutive statements in

which flow of control enters at the beginning and leaves at

the end without halt or possibility of branching except at

the end. We can construct the basic blocks for a program

using algorithm GetBasicBlocks, shown in Figure 1. When

we analyze a program's intermediate code for the purpose

of performing compiler optimizations, a basic block

usually consists of a maximal sequence of intermediate

code statements. When we analyze source code, a basic
block consists of a maximal sequence of source code

statements. We often find it more convenient in the latter

case, however, to just treat each source code statement as a

basic block.

 Algorithm GetBasicBlocks

Input. A sequence of program statements.

Output. A list of basic blocks with each statement in

exactly one basic block.

Method.

(1) Determine the set of leaders: the first statements of
basic blocks. We use the following rules.

a) The first statement in the program is a leader.

b) Any statement that is the target of a conditional or an

unconditional goto statement is a leader.

c) Any statement that immediately follows a conditional

or an unconditional goto statement is a leader.

(2) Construct the basic blocks using the leaders. For each

leader, its basic block consists of the leader and all

statements up to but not including the next leader or

the end of the program.

B. Computing Control Flow Graph

A control flow graph (CFG) is a directed graph in which

each node represents a basic block and each edge

represents the flow of control between basic blocks. To

build a CFG we first build basic blocks, and then we add

edges that represent control flow between these basic

blocks.

After we have constructed basic blocks, we can construct

the CFG for a program using algorithm GetCFG, shown in

Figure The algorithm also works for the case where each
source statement is treated as a basic block.

To illustrate, consider Figure 3, which gives the code for

program Sums on the left and the CFG for Sums on the

right. Node numbers in the CFG correspond to statement

numbers in Sums: in the graph, we treat each statement as

a basic block. Each node that represents a transfer of

control (i.e., 4 and 7) has two labeled edges emanating

from it; all other edges are unlabeled.

In a CFG, if there is an edge from node Bi to node Bj , we
say that Bj is a successor of Bi and that Bi is a predecessor

of Bj . In the example, node 4 has successor nodes 5 and

12, and node 4 has predecessor nodes 3 and 11.

Algorithm GetCFG

Input. A list of basic blocks for a program where the first

block (B1) contains the first program statement.

Output. A list of CFG nodes and edges.

Method.

1. Create entry and exit nodes; create edge (entry, B1);

create edges (Bk, exit) for each basic block Bk that
contains an exit from the program.

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7436

2. Traverse the list of basic blocks and add a CFG edge

from each node Bi to each node Bj if and only if Bj can

immediately follow Bi in some execution sequence, that is,
if:

(a) there is a conditional or unconditional goto statement

from the last statement of Bi to the first statement of Bj, or

(b) Bj immediately follows Bi in the order of the program,

and Bi does not end in an unconditional goto statement.

int main() {

 int sum = 0 ;

 int i = 1 ;

 while (i < 11) {

 sum = sum + i ;

 i = i + 1 ;

 }

 printf(“%d\n”, sum) ;

 printf(“%d\n”,i) ;

}

Figure 5. Sample Control Flow Graph

C. Computing Dominator Tree

A node D in CFG G dominates a node W in G if and only
if every directed path from entry to W (not including W)

contains D. A dominator tree is a tree in which the initial

node is the entry node, and each node dominates only its

descendants in the tree.

Figure gives an algorithm, ComputeDom, for computing

dominators for a control flow graph G. A key to this

algorithm is step 3, where, for each node n except the

entry node, we initialize the set of dominators to the set of

all nodes in G. We then iterate through the nodes (except

the entry node), and for each node n, at step 3, we use the
intersection operator to reduce the set of nodes listed as

dominating n to those that actually dominate predecessors

of n. Thus, we start with an overestimate of the dominators

and reduce the sets to get the actual set of dominators

Algorithm ComputeDom

Input. A control flow graph G with set of nodes N and

initial node n0.

Output. D(n), the set of nodes that dominate n, for each

node n in G

Method. Use an iterative approach similar to the data flow

analysis algorithm ReachingDefs

1. D(n0) = {n0 }

2. for each node n in N− {n0} do D(n) = N
3. while changes to any D(n) occur do

4. for n in N−{n0} do

5. D(n) ={n}U (∩ D(p)) for all immediate predecessors p

of n

6. endfor

7. endwhile

Figure 6. Control Flow Graph

VII. CONTROL FLOW GRAPH (CFG)

A control flow graph describes the sequence in which the

different instructions of a program get executed. In other

words, a control flow graph describes how the control
flows through the program. In order to draw the control

flow graph of a program, all the statements of a program

must be numbered first. The different numbered

statements serve as nodes of the control flow graph . An

edge from one node to another node exists if the execution

of the statement representing the first node can result in

the transfer of control to the other node. The CFG for any

program can be easily drawn by knowing how to represent

the sequence, selection, and iteration type of statements in

the CFG. After all, a program is made up from these types

of statements. Fig.7 summarizes how the CFG for these

three types of statements can be drawn. It is important to
note that for the iteration type of constructs such as the

while construct, the loop condition is tested only at the

beginning of the loop and therefore the control flow from

the last statement of the loop is always to the top of the

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7437

loop. Using these basic ideas, the CFG of Euclid’s GCD

computation algorithm can be drawn as shown in fig.8

below

Figure 7 CFG for (a) sequence, (b) selection, and (c)

iteration type of constructs

Figure 8. Control flow diagram

A. Path

A path through a program is a node and edge sequence

from the starting node to a terminal node of the control

flow graph of a program. There can be more than one

terminal node in a program. Writing test cases to cover all

the paths of a typical program is impractical. For this

reason, the path-coverage testing does not require

coverage of all paths but only coverage of linearly

independent paths.

B. Linearly independent path

A linearly independent path is any path through the

program that introduces at least one new edge that is not

included in any other linearly independent paths. If a path

has one new node compared to all other linearly

independent paths, then the path is also linearly

independent. This is because, any path having a new node

automatically implies that it has a new edge. Thus, a path

that is subpath of another path is not considered to be a

linearly independent path.

C. Cyclomatic complexity

For more complicated programs it is not easy to determine

the number of independent paths of the program.

McCabe’s cyclomatic complexity defines an upper bound

for the number of linearly independent paths through a

program. Also, the McCabe’s cyclomatic complexity is

very simple to compute. Thus, the McCabe’s cyclomatic
complexity metric provides a practical way of determining

the maximum number of linearly independent paths in a

program. Though the McCabe’s metric does not directly

identify the linearly independent paths, but it informs

approximately how many paths to look for.

VIII. BACKWARD SLICING

 A backward slice with respect to a set of starting points S

answers the question “What points in the program does S

depend on?” The control-dependence edges are used to
determine how control could have reached S, and the data

dependence edges are used to determine how the variables

used at S received their values.

 int main() {

 int sum = 0 ;

 int i = 1 ;

 while (i < 11) {

 sum = sum + i ;

 i = i + 1 ;

 }

 printf(“%d\n”, sum) ;
 printf(“%d\n”, i) ;

 }

Backward slice from: printf(“%d\n”, i) ; is given by the

program subset that may affect variable i in underlined

printf();

int main() {

 int sum = 0 ;

 int i = 1 ;

 while (i < 11) {

 sum = sum + i ;

 i = i + 1 ;

 }
 printf(“%d\n”, sum) ;

 printf(“%d\n”,i) ;

}

IX. FORWARD SLICING

A forward slice with respect to a set of starting points S

answers the question “What points in the program depend

on S?” In this also we make use of control and data

dependence edges.

int main() {
 int sum = 0 ;

 int i = 1 ;

 while (i < 11) {

 sum = sum + i ;

i= i+1;

 }

 printf(“%d\n”, sum) ;

 printf(“%d\n”,i) ;

}

Forward slice from: sum = 0 is given by the program
subset that may affected by variable sum in

 int sum =0 statement

int main() {

 int sum = 0 ;

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7438

 int i = 1 ;

 while (i < 11) {

 sum = sum + i ;
 i = i + 1 ;

 }

 printf(“%d\n”, sum) ;

 printf(“%d\n”,i) ;

}

A. Predecessors:

It is natural for a user attempting to understand a program

to ask “How could variable x have gotten its value here?”

This query can be posed with respect to the control

dependences, the data dependences, or both. A program
point’s data predecessors are the points where the

variables used at that point may have gotten their values.

 1 int main() {

 2 int sum = 0 ;

 3 int i = 1 ;

 4 while (i < 11) {

 5 sum = sum + i ;

 6 i = i + 1 ;

 7 }

 8 printf(“%d\n”, sum) ;

 9 printf(“%d\n”,i) ;

 10 }
 The predecessors of variable sum at line no 8 is given by

 1 int main() {

 2 int sum = 0 ;

 3 int i = 1 ;

 4 while (i < 11) {

 5 sum = sum + i ;

 6 i = i + 1;

 7 }

 8 printf(“%d\n”, sum) ;

 9 printf(“%d\n”,i) ;

 10 }

B. Successors:

It is natural for a user attempting to understand a program

to ask “Where is the value generated at this point used

next?” This query can be posed with respect to the control

dependences, the data dependences, or both. A program

point’s data successors are the points where the variables

that were modified at that point are used.

1. int main() {

2 int sum = 0 ;

 3 int i = 1 ;
 4 while (i < 11) {

 5 sum = sum + i ;

 6 i = i + 1 ;

 7 }

 8 printf(“%d\n”, sum) ;

 9 printf(“%d\n”,i) ;

 10 }

 The successors of variable sum at line no 2 is given by

 1 int main() {

 2 int sum = 0 ;

 3 int i = 1 ;

 4 while (i < 11) {
 5 sum = sum + i ;

 6 i = i + 1;

 7 }

 8 printf(“%d\n”, sum) ;
 9 printf(“%d\n”,i) ;

 10 }

X. IMPLEMENTATION

The whole system is arranged in the package called

project, this package contains all the necessary files

needed source code and the documentation of the project.

The directory contains the two more directories one

contains the GUI related code and other contains the back

end source code.

A. The Application Package

 This package contains the source code and the necessary

make file to compile the source code to produce

executable of the GUI program. The code is produced with

the help of the QT Designer in C++. The application is the

gui which offers all the features of the general purpose text
editors. It contains the menu bar which has the File, Help

and Tools as the main menus. The New, Open, Save, Save

As are the common drop down menus, and in Tools the

Slice, Predecessors, Successors, Formatted C code are the

drop down menus. The menus are implemented as the

components provided by QT designer. The dialog boxes

for taking the input from the user are provided using the

components provided by the QT designer and C++

The input information collected from the user is outputted
in the file called “input.txt” which analyses the C program.

Depending on the choice of the user selected the GUI

program and the back end which analyses the C program.

Depending on the choice of the user selected the GUI

program invokes the back end program with appropriate

arguments. The back and then performs the appropriate

operations depending on the arguments supplied to it and

writes the result back to the “output.txt” which is then read

and displayed by the GUI program.

XI. CONCLUSION
We have described a tool for inspecting and manipulating

the Control flow graph representation of a program for the

purposes of program understanding and discussed how it

can be used for software inspections. We have described

the means by which the system answers queries about the

dataflow properties of the program using context-free

language graph reachability.

We have described using a model checker to answer

questions about possible paths through the program. There
are two main thrusts in its development. The first is we

have improved the scalability of the system. This is

achieved partly by using demand-driven techniques to

reduce the up-front cost of building the dependence graph.

The other thrust is we have extended the domain of

applications for the system.

We can make any source program efficient by minimizing

the dependency graph. The Future scope of this project is

one can apply the technology to software assurance, and to

program-testing problems.

ISSN (Online) : 2278-1021
 ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7439

XII. REFERENCES
[1] L.O. Andersen, “Program Analysis and Specialization for the C

Programming Language,” PhD thesis, DIKU, Univ. of

Copenhagen,May 1994.

[2] T. Ball and S.K. Rajamani, “Bebop: A Symbolic Model Checker

for Boolean Programs,” Proc. SPIN Workshop, pp. 113-130, 2000.

[3] S. Bates and S. Horwitz, “Incremental Program Testing Using

Program Dependence Graphs,” Proc. Symp. Princples of

Programming Languages, pp. 384-396, 1993.

[4] P. Bishop, R. Bloomfield, S. Guerra, and T. Clement, “Software

Criticality Analysis of COTS/SOUP,” Proc. Safecomp 2002, Sept.

2002.

[5] M. Burke and R. Cytron, “Interprocedural Dependence Analysis

and Parallelization,” Proc. SIGPLAN ’86 Symp. Compiler

Construction,pp. 162-175, 1986.

[6] Bell Canada, http://www.iro.umontreal.ca/labs/gelo/datrix, 2001.

[7] E.M. Clarke, M. Fujita, P.S. Rajan, T. Reps, S. Shankar, and T.

Teitelbaum, “Program Slicing of Hardware Description

Languages,Proc. Conf. Correct Hardware Design and Verification

Methods (CHARME ’99), Sept. 1999.

[8] [8] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking.

MIT Press, 1999.

[9] K.D. Cooper and K. Kennedy, “Interprocedural Side-Effect

Analysis in Linear Time,” Proc. ACM SIGPLAN 88 Conf.

Programming Language Design and Implementation, pp. 57-66,

June 1988.

[10] J.R. Cordy, C.D. Halpern, and E. Promislow, “TXL: A Rapid

Prototyping System for Programming Language Dialects,”

Computer Languages, vol. 16, no. 1, pp. 97-107, Jan. 1991.

[11] D.E. Denning and P.J. Denning, “Certification of Programs for

Secure Information Flow,” Comm. ACM, vol. 20, no. 7, pp. 504-

513, July 1977

[12] J. Drake, V. Mashayekhi, J. Riedl, and W. Tsai, “A Distributed

Collaborative Software Inspection Tool: Design, Prototype, and

Early Trial,” Technical Report TR-91-30, Univ. of Minnesota, Aug.

1991.

[13] A. Dunsmore, “Comprehension and Visualisation of Object-

Oriented Code for Inspections,” Technical Report EFoCS-33-98,

Computer Science Dept., Univ. of Strathclyde, 1998.

[14] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking System

Rules Using System-Specific, Programmer-Written Compiler

Extensions,” Proc. Fourth Symp. Operating Systems Design and

Implementation, pp. 1-16, Oct. 2000.

[15] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon, “Efficient

Algorithms for Model Checking Pushdown Systems,” Computer

Aided Verification, pp. 232-247, 2000.

[16] M. Fagan, “Design and Code Inspections to Reduce Errors in

Program Development,” IBM Systems J., vol. 15, no. 3, pp. 182-

211, 1976

	Computation of Basic Blocks
	A basic block is a sequence of consecutive statements in which flow of control enters at the beginning and leaves at the end without halt or possibility of branching except at the end. We can construct the basic blocks for a program using algorithm Ge...
	Algorithm GetBasicBlocks
	Input. A sequence of program statements.
	Output. A list of basic blocks with each statement in exactly one basic block.
	Method.
	Algorithm GetCFG
	Method.
	Algorithm ComputeDom
	Output. D(n), the set of nodes that dominate n, for each node n in G
	Figure 6. Control Flow Graph
	BACKWARD SLICING
	FORWARD SLICING
	Predecessors:
	It is natural for a user attempting to understand a program to ask “How could variable x have gotten its value here?” This query can be posed with respect to the control dependences, the data dependences, or both. A program point’s data predecessors a...
	The predecessors of variable sum at line no 8 is given by
	The successors of variable sum at line no 2 is given by
	IMPLEMENTATION
	The Application Package
	This package contains the source code and the necessary make file to compile the source code to produce executable of the GUI program. The code is produced with the help of the QT Designer in C++. The application is the gui which offers all the featu...

